1887
Volume 17 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The geological setting in the north of Ireland, especially concerning the origin of the Moffat Shale Group, has long been under discussion. Within the Tellus Programme of the Geological Survey Ireland, airborne electromagnetic measurements revealed high‐conductivity anomalies that have been interpreted as the response of a black shale. In order to petrophysically characterize the Moffat Shale, a laboratory study using material from two shallow boreholes was carried out. The study focuses on spectral induced polarization measurements on 23 oriented samples in the frequency range from 10−4 to 105 Hz.

The sample material can be categorized into two groups. A mudstone‐like rock type shows weakly frequency‐dependent, porosity‐driven conductivities with a strong anisotropy. On the other hand, black shale samples are characterized by moderately anisotropic but strong polarization effects especially at low frequencies and a strong conductivity increase towards higher frequencies. The polarization in the black shale is controlled by the texture and volume fraction of the polarizable components. The spectral induced polarization data are processed by means of a Debye decomposition approach. The anisotropy of the complex electrical conductivity is determined by utilizing the foliation dip angle and assuming tilted transverse isotropic conditions. The relevance of the laboratory findings for airborne electromagnetic surveys is addressed with a synthetic one‐dimensional modelling study.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12073
2019-12-05
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/nsg/17/6/nsg12073.html?itemId=/content/journals/10.1002/nsg.12073&mimeType=html&fmt=ahah

References

  1. AnschützH., BazinS., KasinK., PfaffhuberA. and SmaavikT.2017. Airborne mapping of sensitive clay‐stretching the limits of AEM resolution and accuracy. Near Surface Geophysics15, 467–474.
    [Google Scholar]
  2. Arab‐AmiriA.R., MoradzadehA., FathianpourN. and SiemonB.2010. Inverse modeling of HEM data using a new inversion algorithm. International Journal of Mining Reclamation and Environment1, 9–20.
    [Google Scholar]
  3. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers146, 54–62.
    [Google Scholar]
  4. AukenE., ChristiansenA.V., KirkegaardC., FiandacaG., SchamperC., BehroozmandA.A., et al. 2015, An overview of a highly versatile forward and stable inverse algorithm for airborne, ground‐based and borehole electromagnetic and electric data. Exploration Geophysics46, 223–235.
    [Google Scholar]
  5. AvdeevD.B., KuvshinovA.V., PankratovO.V. and NewmanG.A.1998. Three‐dimensional frequency‐domain modeling of airborne electromagnetic response. Exploration Geophysics29, 111–119.
    [Google Scholar]
  6. BazinS., LysdahlA., ViezzoliA., GüntherT., AnschützH., ScheibzJ., et al. 2018. Resistivity and chargeability survey for tunnel investigation: a case study on toxic black shale in Norway. Near Surface Geophysics16, 1–11.
    [Google Scholar]
  7. BeamishD., KimbellG., StoneP. and AndersonT.2010. Regional conductivity data used to reassess Lower Palaeozoic structure in the Northern Ireland sector of the Southern Uplands‐Down‐Longford terrane. Journal of the Geological Society167, 649–657.
    [Google Scholar]
  8. BörnerJ.H., HerdegenV., RepkeJ.‐U. and SpitzerK.2017. Spectral induced polarization of the three‐phase system CO2‐brine‐sand under reservoir conditions. Geophysical Journal International208, 289–305.
    [Google Scholar]
  9. BörnerJ., GiraultF., BhattaraiM., AdhikariL., DeldicqueD., PerrierF., et al. 2018. Anomalous complex electrical conductivity of a graphitic black schist from the Himalayas of Central Nepal. Geophysical Research Letters45, 3984–3993.
    [Google Scholar]
  10. BückerM. and HördtA. 2013. Analytical modelling of membrane polarization with explicit parametrization of pore radii and the electrical double layer. Geophysical Journal International194, 804–813.
    [Google Scholar]
  11. ColeK.S. and Cole, R.H. 1941. Dispersion and absorption in dielectrics ‐ I. Alternating current characteristics. The Journal of Chemical Physics9, 341–351.
    [Google Scholar]
  12. CooperM., FloydJ., BarkerG., TureM., HodgsonJ., McConnellB., et al. 2016. The geological significance of electrical conductivity anomalies of the Ordovician‐Silurian Moffat Shale Group, Northern Ireland. In: Unearthed: Impacts of the Tellus Surveys of the North of Ireland (ed M.E.Young), pp. 169–178. Royal Irish Academy, Dublin, Ireland.
    [Google Scholar]
  13. DekkerD.L. and HastieL.M.1980. Magneto‐telluric impedances of an anisotropic layered Earth model. Geophysical Journal International61, 11–20.
    [Google Scholar]
  14. DuvalY., MielczarskiJ.A., PokrovskyO.S., MielczarskiE. and EhrhardtJ.J.2002. Evidence of the existence of three types of species at the quartz‐aqueous solution interface at pH 0–10: XPS surface group quantification and surface complexation modeling. Journal of Physical Chemistry B106, 2937–2945.
    [Google Scholar]
  15. FountainD.1998. Airborne electromagnetic systems—50 years of development. Exploration Geophysics29, 1–11.
    [Google Scholar]
  16. GötzeH.J., AfanasjewM., AlversM., Barrio‐AlversL., BörnerR.‐U., BrandesC., et al. 2014. Towards an integrative inversion and interpretation of airborne and terrestrial data. In: Tomography of the Earth's Crust: From Geophysical Sounding to Real‐Time Monitoring (eds M.Weber and UMünch), pp. 21–41. Advanced Technologies in Earth Sciences. Springer.
    [Google Scholar]
  17. GurinG., IlyinY., NilovS., IvanovD., KozlovE., and TitovK.2018. Induced polarization of rocks containing pyrite: Interpretation based on X‐ray computed tomography. Journal of Applied Geophysics154, 315–325.
    [Google Scholar]
  18. HalischM., WellerA., SattlerC.‐D., DebschützW. and El‐SayedA. M.2009. A complex core‐log case study of an anisotropic sandstone, originating from Bahariya Formation, Abu Gharadig Basin, Egypt, Petrophysics50, 478–497.
    [Google Scholar]
  19. HelmholtzH., 1879. Studien über electrische Grenzschichten. Annalen der Physik243, 337–382.
    [Google Scholar]
  20. HupferS., MartinT., WellerA., GüntherT., KuhnK., Djotsa Nguimeya NgninjioV., et al. 2015. Polarization effects of unconsolidated sulphide‐sand‐mixtures. Journal of Applied Geophysics135, 456–465.
    [Google Scholar]
  21. HerrmannA.G. and Knake, D.1973. Coulometrisches Verfahren zur Bestimmung von Gesamt‐, Carbonat‐ und Nicht‐carbonat‐Kohlenstoff in magmatischen, metamorphen und sedimentären Gesteinen. Zeitschrift Analytische Chemie266, 196‐201.
    [Google Scholar]
  22. JödickeH., KruhlJ.H., BallhausC., GieseP. and Untiedt, J.2004. Syngenetic, thin graphite‐rich horizons in lower crustal rocks from the Serre San Bruno, Calabria (Italy), and implications for the nature of high‐conducting deep crustal layers. Physics of the Earth and Planetary Interiors141, 37–58.
    [Google Scholar]
  23. KassabM.A. and WellerA.2019. Anisotropy of permeability, P‐wave velocity and electrical resistivity of Upper Cretaceous carbonate samples from Tushka Area, Western Desert, Egypt. Egyptian Journal of Petroleum, 28, 189–196.
    [Google Scholar]
  24. KellerG., FrischknechtF. 1966. Electrical Methods in Geophysical Prospecting. Pergamon Press.
    [Google Scholar]
  25. KiyanD., RathV. and DelhayeR.2017. An inversion toolbox for frequency‐ and time‐domain airborne electromagnetic data from surveys in Ireland. EAGE, the Second European Airborne Electromagnetics Conference in Malmö, Sweden, 7 September, 2017, Extended Abstract.
  26. KozenyJ.1927. Über kapillare Leitung des Wassers im Boden. Akademie der Wissenschaft Wien 136, 271–306.
  27. KratzerT. and MacnaeJ.C.2012. Induced polarization in airborne EM. Geophysics77, E317–E327.
    [Google Scholar]
  28. LeroyP., RevilA., KemnaA., Cosenza, A. and GhorbaniA.2008. Complex conductivity of water‐saturated packs of glass beads. Journal of Colloid and Interface Science321, 103–117.
    [Google Scholar]
  29. LiD., WangY., LinJ., YuS. and JiY.2017. Electromagnetic noise reduction in grounded electrical‐source airborne transient electromagnetic signal using a stationary wavelet‐based denoising algorithm. Near Surface Geophysics15, 163–173.
    [Google Scholar]
  30. LinC., FiandacaG, AukenE, CoutoM.A. and ChristiansenA.V.2019. A discussion of 2D induced polarization effects in airborne electromagnetic and inversion with a robust 1D laterally constrained inversion scheme. Geophysics84, E75–E88.
    [Google Scholar]
  31. LiuY., YinC.2014. 3D anisotropic modeling for airborne EM systems using finite‐difference method. Journal of Applied Geophysics109, 186–194.
    [Google Scholar]
  32. MarshallD.J. and MaddenT.R.1959. Induced polarization, a study of its causes. Geophysics4, 790–816.
    [Google Scholar]
  33. MartíA.2014. The role of electrical anisotropy in magnetotelluric responses: from modelling and dimensionality analysis to inversion and interpretation. Surveys in Geophysics35, 179–218.
    [Google Scholar]
  34. McMillanS.M., Haber, E. and MarchantD. 2018. Large scale 3D airborne electromagnetic inversion – recent technical improvements. 26th AEGC Conference, Sydney, Australia, 18 February, 2018, Extended Abstract.
  35. MitchellW.2004. The Geology of Ireland – Our Natural Foundation, 2 ed.Geological Survey of Northern Ireland, Belfast.
    [Google Scholar]
  36. Müller‐HuberE., SchönJ.H. and BörnerF.2015. The effect of a variable pore radius on formation resistivity factor. Journal of Applied Geophysics116,173–176.
    [Google Scholar]
  37. NabighianM. N.
    (ed.). 1987. Electromagnetic Methods in Applied Geophysics ‐ Theory. Volume 1. Society of Exploration Geophysicists, Tulsa.
    [Google Scholar]
  38. NordsiekS. and WellerA.2008. A new approach to fitting induced‐polarization spectra. Geophysics73, F235–F245.
    [Google Scholar]
  39. OlhoeftG.R.1985. Low‐frequency electrical properties. Geophysics50, 2492–2503.
    [Google Scholar]
  40. PapeH., RiepeM. and SchopperJ.R.1982. A pigeon‐hole model for relating permeability to specific surface. The Log Analyst23, 5–13.
    [Google Scholar]
  41. PeltonW., WardS., HallofP., SillW. and NelsonP.1978. Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics43, 588–609.
    [Google Scholar]
  42. PfaffhuberA., HendricksS. and KvistedalY. 2012. Progressing from 1D to 2D and 3D near‐surface airborne electromagnetic mapping with a multisensor, airborne sea‐ice explorer. Geophysics77, 109–117.
    [Google Scholar]
  43. RevilA. and GloverP.W.J.1997. Theory of ionic‐surface electrical conduction in porous media. Physical Review B55, 1757–1773.
    [Google Scholar]
  44. RevilA., WoodruffW.F., Torres‐VerdínC. and PrasadM.2013. Complex conductivity tensor of anisotropic hydrocarbon bearing shales and mudrocks. Geophysics76, D403–D418.
    [Google Scholar]
  45. RevilA., FlorschN. and MaoD.2015. Induced polarization response of porous media with metallic particles—Part 1: A theory for disseminated semiconductors. Geophysics80, D252–D538.
    [Google Scholar]
  46. SchönJ.2015. Physical Properties of Rocks—Fundamentals and Principles of Petrophysics, 2nd ed. Handbook of Geophysical Exploration, Vol. 18. Elsevier.
    [Google Scholar]
  47. ScheunertM., UllmannA., AfanasjewM., BörnerR.‐U., SiemonB. and SpitzerK.2016. A cut‐&‐paste strategy for the 3‐D inversion of helicopter‐borne electromagnetic data ‐ I. 3D inversion using the explicit Jacobian and a tensor‐based formulation. Journal of Applied Geophysics129, 209–211.
    [Google Scholar]
  48. SchwarzG., 1962. A theory of the low‐frequency dielectric dispersion of colloidal particles in electrolyte solution. Journal of Physical Chemistry66, 2636–2642.
    [Google Scholar]
  49. SiemonB., ChristiansenA.V., AukenE.2009a. A review of helicopter‐borne electromagnetic methods for groundwater exploration. Near Surface Geophysics7, 629–646.
    [Google Scholar]
  50. SiemonB., AukenE., ChristiansenA.V.2009b. Laterally constrained inversion of helicopter‐borne frequency‐domain electromagnetic data. Journal of Applied Geophysics67, 259–268.
    [Google Scholar]
  51. TarantolaA.2005. Inverse Problem Theory and Methods for Model Parameter Estimation. Other Titles in Applied Mathematics, Vol. 89. SIAM, Philadelphia.
    [Google Scholar]
  52. TuckerM.2001. Sedimentary Petrology ‐ An Introduction to the Origin of Sedimentary Rocks, 3rd ed.Blackwell Science, Oxford.
    [Google Scholar]
  53. UffmannA., LittkeR. and Rippen, D.2012. Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian black shales at the northern margin of the Variscan mountain belt (Germany and Belgium). International Journal of Coal Geology103, 92–108.
    [Google Scholar]
  54. WeideltP.1999. 3D conductivity models: implications of electrical anisotropy. In: Three‐Dimensional Electromagnetics (eds M.Oristaglio and B.Spies), pp 119–137. SEG.
    [Google Scholar]
  55. WeigandM. and KemnaA.2016. Relationship between Cole–Cole model parameters and spectral decomposition parameters derived from SIP data, Geophysical Journal International205, 1414–1419.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12073
Loading
/content/journals/10.1002/nsg.12073
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Airborne EM , Chargeability , Complex Conductivity , Induced Polarization and Shallow Subsurface
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error