1887
Volume 18 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

An interesting geological objective of quantitative interpretation of magnetic data is to find inverse models which can determine sharp geological interfaces below the surface. The stabilizing function in the Tikhonov parametric functional governs sparseness constraint in the recovered model. This paper introduces a novel stabilizer based on a sigmoid function which can provide non‐smooth models in the inversion of magnetic data efficiently. An inversion algorithm is developed based on the reweighted regularized conjugate gradient to get the solution of the inverse problem using this stabilizing function. The performance of the proposed algorithm is checked on two synthetic data sets and real aeromagnetic data from McFaulds Lake in Ontario, Canada, in comparison with the results of the minimum support stabilizing function. The inverse problem converges to the solution faster when the sigmoid stabilizing function is used instead of the minimum support stabilizing function.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12080
2019-12-29
2024-04-19
Loading full text...

Full text loading...

References

  1. AbediM., GholamiA. and NorouziG.H.2014. 3D inversion of magnetic data seeking sharp boundaries: a case study for a porphyry copper deposit from Now Chun in central Iran. Near Surface Geophysics12, 657–666.
    [Google Scholar]
  2. AbediM., GholamiA., NorouziG.H. and FathianpourN.2013. Fast inversion of magnetic data using Lanczos bidiagonalization method. Journal of Applied Geophysics90, 126–137.
    [Google Scholar]
  3. AscherU.M. and HaberE.2001. Grid refinement and scaling for distributed parameter estimation problems. Inverse Problems17, 571.
    [Google Scholar]
  4. BalchS.J., MungallJ.E. and NiemiJ.2010. Present and Future Geophysical Methods for Ni‐Cu‐PGE Exploration: Lessons from McFaulds Lake. SEG Special Publication, Northern Ontario15, 559–572.
    [Google Scholar]
  5. BarbosaV.C.F. and SilvaJ.B.1994. Generalized compact gravity inversion. Geophysics59, 57–68.
    [Google Scholar]
  6. Bertete‐AguirreH., CherkaevE. and OristaglioM.2002. Non‐smooth gravity problem with total variation penalization functional. Geophysical Journal International149, 499–507.
    [Google Scholar]
  7. BlakelyR.J.1996. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge.
    [Google Scholar]
  8. CamachoA.G., MontesinosF.G. and VieiraR.2000. Gravity inversion by means of growing bodies. Geophysics65, 95–101.
    [Google Scholar]
  9. ČumaM., GribenkoA. and ZhdanovM.S.2017. Inversion of magnetotelluric data using integral equation approach with variable sensitivity domain: Application to EarthScope MT data. Physics of the Earth and Planetary Interiors270, 113–127.
    [Google Scholar]
  10. ČumaM., WilsonG.A. and ZhdanovM.S.2012. Large‐scale 3D inversion of potential field data. Geophysical Prospecting60, 1186–1199.
    [Google Scholar]
  11. ČumaM. and ZhdanovM.S.2014. Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs. Computers and Geosciences62, 80–87.
    [Google Scholar]
  12. FarquharsonC.G.2008. Constructing piecewise‐constant models in multidimensional minimum‐structure inversions. Geophysics73, K1–K9.
    [Google Scholar]
  13. FeiZ., ChunhuiT., TaoW., ZhaofaZ. and CaiL.2018. 3D focused inversion of near‐bottom magnetic data from autonomous underwater vehicle in rough seas. Ocean Science Journal53, 405–412.
    [Google Scholar]
  14. FoksN.L., KrahenbuhlR. and LiY.2014. Adaptive sampling of potential‐field data: a direct approach to compressive inversion. Geophysics79, IM1–IM9.
    [Google Scholar]
  15. GlegolaM., DitmarP., VossepoelF., ArtsR., Al‐KindyF. and KleesR.2015. Gravimetric monitoring of the first field‐wide steam injection in a fractured carbonate field in Oman—a feasibility study. Geophysical Prospecting63, 1256–1271.
    [Google Scholar]
  16. GrombacherD., FiandacaG., BehroozmandA.A. and AukenE.2017. Comparison of stabiliser functions for surface NMR inversions. Near Surface Geophysics15, 533–544.
    [Google Scholar]
  17. HouZ.L., WeiX.H., HuangD.N. and SunX.2015. Full tensor gravity gradiometry data inversion: performance analysis of parallel computing algorithms. Applied Geophysics12, 292–302.
    [Google Scholar]
  18. HuM., YuP., RaoC., ZhaoC. and ZhangL.2019. 3D sharp‐boundary inversion of potential‐field data with an adjustable exponential stabilizing functional. Geophysics84, J1–J15.
    [Google Scholar]
  19. JiS., ZhangH., WangY., RongL., ShiY. and ChenY.2019. Three‐dimensional inversion of full magnetic gradient tensor data based on hybrid regularization method. Geophysical Prospecting67, 226–261.
    [Google Scholar]
  20. LastB.J. and KubikK.1983. Compact gravity inversion. Geophysics48, 713–721.
    [Google Scholar]
  21. LiY. and OldenburgD.W.1996. 3‐D inversion of magnetic data. Geophysics61, 394–408.
    [Google Scholar]
  22. LiY. and OldenburgD.W.2003. Fast inversion of large‐scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International152, 251–265.
    [Google Scholar]
  23. LinW. and ZhdanovM.S.2018. Joint multinary inversion of gravity and magnetic data using Gramian constraints. Geophysical Journal International215, 1540–1557.
    [Google Scholar]
  24. MengZ.2018. Three‐dimensional potential field data inversion with L0 quasinorm sparse constraints. Geophysical Prospecting66, 626–646.
    [Google Scholar]
  25. MengZ., LiF., XuX., HuangD. and ZhangD.2017. Fast inversion of gravity data using the symmetric successive over‐relaxation (SSOR) preconditioned conjugate gradient algorithm. Exploration Geophysics48, 294–304.
    [Google Scholar]
  26. MengZ., LiF., XuX., ZhouW. and HangD.2018. Sparsity constraints using a Laplacian kernel to get geological structures from potential field data. Near Surface Geophysics16, 1–14.
    [Google Scholar]
  27. Ontario Geological Survey and Geological Survey of Canada , 2011. Ontario irborne geophysical surveys, gravity gradiometer and magnetic data, grid and profile data (ASCII and Geosoft R formats) and vector data, McFaulds Lake area, Ontario Geological Survey, Geophysical Data Set 1068.
  28. PilkingtonM.1997. 3‐D magnetic imaging using conjugate gradients. Geophysics62, 1132–1142.
    [Google Scholar]
  29. PilkingtonM.2009. 3D magnetic data‐space inversion with sparseness constraints. Geophysics74, L7–L15.
    [Google Scholar]
  30. PortniaguineO. and ZhdanovM.S.1999. Focusing geophysical inversion images. Geophysics64, 874–887.
    [Google Scholar]
  31. PortniaguineO. and ZhdanovM.S.2002. 3‐D magnetic inversion with data compression and image focusing. Geophysics67, 1532–1541.
    [Google Scholar]
  32. RaoD.B. and BabuN.R.1991. A rapid method for three‐dimensional modeling of magnetic anomalies. Geophysics56, 1729–1737.
    [Google Scholar]
  33. RezaieM., MoradzadehA. and KalatehA.N.2017a. Fast 3D inversion of gravity data using solution space priorconditioned lanczos bidiagonalization. Journal of Applied Geophysics136, 42–50.
    [Google Scholar]
  34. RezaieM., MoradzadehA., KalateA.N. and AghajaniH.2017b. Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos bidiagonalization method. Pure and Applied Geophysics174, 359–374.
    [Google Scholar]
  35. RezaieM., MoradzadehA., KalateA.N., AghajaniH., KahooA.R. and MoazamS.2017c. 3D modelling of Trompsburg Complex (in South Africa) using 3D focusing inversion of gravity data. Journal of African Earth Sciences130, 1–7.
    [Google Scholar]
  36. SunY., MengZ. and LiF.2018. Large airborne full tensor gradient data inversion based on a non‐monotone gradient method. Pure and Applied Geophysics175, 1065–1084.
    [Google Scholar]
  37. TikhonovA.N. and ArseninV.Y.1977. Solutions of Ill‐Posed Problems. Winston, Washington, D.C.
    [Google Scholar]
  38. XiangY., YuP., ZhangL., FengS. and UtadaH.2017. Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional. Earth, Planets and Space69, 158.
    [Google Scholar]
  39. ZhaoC., YuP. and ZhangL.2016. A new stabilizing functional to enhance the sharp boundary in potential field regularized inversion. Journal of Applied Geophysics135, 356–366.
    [Google Scholar]
  40. ZhdanovM.S.2002. Geophysical Inverse Theory and Regularization Problems (Vol. 36). Elsevier, Oxford.
    [Google Scholar]
  41. ZhdanovM.S.2015. Inverse Theory and Applications in Geophysics (Vol. 36). Elsevier, Oxford.
    [Google Scholar]
  42. ZhdanovM.S., EndoM., CoxL.H., CumaM., LinfootJ., AndersonC. and GribenkoA.V.2014. Three‐dimensional inversion of towed streamer electromagnetic data. Geophysical Prospecting62, 552–572.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12080
Loading
/content/journals/10.1002/nsg.12080
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 3D; Inversion; Magnetic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error