1887
Volume 18 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The Port of Trieste is an international hub for land and sea trade with the dynamic markets of central and eastern Europe. Thanks to its deep natural draft (about 18 m), the modern high‐capacity vessels can moor to the piers. In view of the foreseen increase in maritime traffic, this harbour is undergoing modernization in order to improve the commercial traffic capability. In this expansion plan, the container Trieste Marine Terminal, Pier VII, is seeking an extension by about 200 m. In support of this feasibility study, multidisciplinary data acquisition was conducted in order to characterize the seabed, the sub‐bottom sediments and the bedrock (flysch formation) in front of the Trieste Marine Terminal. The acquisition of high‐resolution swath bathymetry, side‐scan sonar and magnetometer data allowed a detailed analysis of the seabed conditions from an environmental and safety perspective. High‐resolution seismic reflection data enabled us to characterize the Plio‐Quaternary soft sediments and the underlying bedrock. A static underwater refraction survey was performed using hydrophone array deployed on the sea bottom to obtain seismic velocities and to achieve a reliable time‐to‐depth conversion of reflection seismic data by first‐arrival tomographic inversion. In addition to geophysical investigations, 11 offshore boreholes were drilled for detailed logging. standard penetration tests were performed on core samples with the use of a pocket penetrometer and pocket vane in order to obtain uniaxial compressive strength, undrained shear strength and undrained cohesion values, and assess the cohesive soils. During drilling, 17 undisturbed samples and 12 semi‐disturbed samples were extracted to perform laboratory tests for the identification of the principal geotechnical parameters. The goal was to obtain a reliable geological/geotechnical model in front of the Trieste Marine Terminal – from the seabed to the bedrock. Below the seafloor, a sequence of about 20–30 m thickness, containing Plio‐Quaternary soft sediments, overlies the flysch, which locally presents alteration with rocks of reduced quality. The geophysical–geotechnical integrated approach allowed us to identify and map the top of the bedrock and provided valuable information for planning the pier extension project.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12084
2020-01-20
2024-04-23
Loading full text...

Full text loading...

References

  1. AndersonJ. and RingisJ.1999. Continuous seismic refraction profiling – a major advance in geophysical investigations for port and dredging projects. Coastal and Ocean Engineering Conference, 14–16 April 1999, Perth, Western Australia, 40–45.
  2. BernsteinD. and FreemanC.2011. Independent surveys prove both time and cost effective. Port and Technology, PTI EDITION 47, 1–2.
    [Google Scholar]
  3. BiolchiS., FurlaniS., CovelliS., BusettiM. and CucchiF.2016. Morphoneotectonics and lithology of the eastern sector of the Gulf of Trieste (NE Italy). Journal of Maps12, 936–946.
    [Google Scholar]
  4. BohlenT., KuglerS., KleinG.F. and TheilenF.2004. 1.5D inversion of lateral variation of Scholte wave dispersion. Geophysics69, 330–344.
    [Google Scholar]
  5. BöhmG., RossiG. and VesnaverA.1999. Minimum time ray‐tracing for 3‐D irregular grids. Journal of Seismic Exploration8, 117–131.
    [Google Scholar]
  6. BrambatiA. and CataniG.1988. Le coste e i fondali del Golfo di Trieste dall'Isonzo a Punta Sottile: aspetti geologici, geomorfologici, sedimentologici e geotecnic. Hydrores Information6, 13–28.
    [Google Scholar]
  7. BullJ.M., QuinnR. and DixJ.K.1998. Reflection coefficient calculation from marine high‐resolution seismic reflection (Chirp) data. Marine Geophysical Researches20, 1–11.
    [Google Scholar]
  8. BusettiM., VolpiV., BarisonE., GiustinianiM., MarchiM., RamellaR.et al. 2010a. Cenozoic seismic stratigraphy and tectonic evolution of the Gulf of Trieste (Northern Adriatic). GeoActa SP 3, 1–14.
    [Google Scholar]
  9. BusettiM., VolpiV., NicolichR., BarisonE., RomeoR., BaradelloL.et al. 2010b. Dinaric tectonic features in the Gulf of Trieste (Northern Adriatic). Bollettino di Geofisica Teorica e Applicata 51, 2–3, 117–128.
    [Google Scholar]
  10. BusettiM., ZgurF., RomeoR., SormaniL. and PettenatiF.2012. Caratteristiche Geologico strutturali nel golfo di Trieste. Meeting Marino ISPRA, Roma, 25–26 October.
  11. CarobeneL., CarulliG.B. and VaiaF.1981. Foglio 25 Udine. In: Carta Tettonica Delle Alpi Meridionali, Vol. 441 (ed A.Castellarin), pp. 39–54. CNR – Progetto Finalizzato Geodinamica Pubbl, Bologna.
    [Google Scholar]
  12. CarrionP., BöhmG., MarchettiA., PettenatiF. and VesnaverA.1993. Reconstruction of lateral gradients from reflection tomography. Journal of Seismic Exploration2, 55–67.
    [Google Scholar]
  13. CarulliG.B., CaroteneL., CavallinA., MartinisB., OnofriR., CucchiF.et al. 1980. Evoluzione strutturale Plio‐Quaternaria del Friuli e della Venezia Giulia. Contributi alla Carta Neotettonica d'Italia. CNR ± Progetto Finalizzato Geodinamica Pubbl356, 488–545.
    [Google Scholar]
  14. CasagrandeA.1948. Classification and identification of soils. Transaction, ASCE113, 901–930.
    [Google Scholar]
  15. CavallinA., MartinisB., CarobeneL. and CarulliG.B.1978. Dati preliminari sulla Neotettonica dei Fogli 25 (Udine) e 40A (Gorizia). Contributi preliminari alla realizzazione della carta neotettonica d'Italia. CNR – Progetto Finalizzato Geodinamica, Pubbl155, 189–197.
    [Google Scholar]
  16. ColantoniP., GabbianelliG., Ceffal., CeccoliniC. and RicchiutoT.1998. Bottom features and gas seepages in the Adriatic Sea. Paper presented at 5th International Conference on Gas in Marine Sediments, September, Bologna, Italy, 28–31.
  17. ContiA., StefanonA. and ZuppiG.M.2002. Gas seeps and rock formation in the northern Adriatic Sea. Continental Shelf Research22, 2333–2344.
    [Google Scholar]
  18. Del BenA., FinettiI., RebezA. and SlejkoD.1991. Seismicity and seismotectonics at the Alps‐Dinarides contact. Bollettino di Geofisica Teorica ed Applicata32, 155–176.
    [Google Scholar]
  19. DondaF., CivileD., ForlinE.VolpiV., ZecchinM., GordiniE.et al. 2013. The northernmost Adriatic Sea: a potential location for CO2 geological storage?Marine and Petroleum Geology42, 148–159.
    [Google Scholar]
  20. DondaF., ForlinE., GordiniE., PanieriG., BuenzS., VolpiV.et al. 2015. Deep‐sourced gas seepage and methane derived carbonates in the Northern Adriatic Sea. Basin Research27, 531–545.
    [Google Scholar]
  21. FantoniR., CatellaniD., MerliniS., RoglediS. and VenturiniS.2002. La registrazione degli eventi deformativi cenozoici nell'avampaese veneto‐friulano. Memorie della Società Geologica Italiana57, 301–313.
    [Google Scholar]
  22. FinettiI.R.1965. Ricerche sismiche marine nel Golfo di Trieste (Profilo sismico a rifrazione “Grado‐Miramare”). Bollettino di Geofisica Teorica ed Applicata7, 201–217.
    [Google Scholar]
  23. FinettiI.R.1967. Ricerche sismiche a rifrazione sui rapporti strutturali fra il Carso e il Golfo di Trieste. Bollettino di Geofisica Teorica ed Applicata9, 214–225.
    [Google Scholar]
  24. FinettiI.R. and Del BenA.2005. Crustal tectono‐stratigraphic setting of the Adriatic Sea from new CROP seismic data. In: CROP Project. Atlases in Geoscience 1 (ed I.R.Finetti), pp. 519–547. Elsevier B.V. Amsterdam, the Netherlands.
    [Google Scholar]
  25. García‐GarcíaA., OrangeD.L., MiserocchiS., CorreggiariA., LangoneL., LorensonT.D.et al. 2007. What controls the distribution of shallow gas in the Western Adriatic Sea?Continental Shelf Research27, 359–374.
    [Google Scholar]
  26. GilbertP.1972. Iterative methods for the three‐dimensional reconstruction of an object from projections. Journal of Theoretical Biology36, 105–117.
    [Google Scholar]
  27. GordiniE.2009. Integrazione di metodologie geofisiche, geomorfologiche, sedimentologiche e geochimiche per la definizione della genesi e dell'età degli affioramenti rocciosi presenti sul fondale marino dell'Adriatico settentrionale. PhD thesis, University of Trieste, Trieste, Italy.
    [Google Scholar]
  28. GordiniE., FalaceA., KalebS., DondaF., MaroccoR. and TunisG.2012. Methane related carbonate cementation of marine sediments and related macroalgal coralligenous assemblages in the Northern Adriatic Sea. In: Seafloor Geomorphology as Benthic Habitats (eds P.T.Harris and E.K.Baker), pp. 183–198. Elsevier, London, UK.
    [Google Scholar]
  29. GordiniE., MaroccoR., TunisG. and RamellaR.2004. The cemented deposits of the Trieste Gulf (Northern Adriatic Sea): areal distribution, geomorphologic characteristics and high resolution seismic survey. Italian Journal of Quaternary Sciences17, 555–563.
    [Google Scholar]
  30. HollandC.W., DettmerJ., SteiningerG., DossoA.E. and LowrieA.2020. Acoustic measurements of marine sediments with pebbles and cobbles. Near Surface Geophysics18, 5–22.
    [Google Scholar]
  31. LandschulzeM.2018. Seismic wave propagation in floating ice sheets – a comparison of numerical approaches and forward modelling. Near Surface Geophysics16, 493–505.
    [Google Scholar]
  32. MasoliC.A., PetronioL., GordiniE., DeponteM., CotterleD., RomeoR.et al. 2015. Marine geophysical and geological investigations in support to the construction of new harbor infrastructures: the Trieste Marine Terminal extension. 34 convegno nazionale del Gruppo Nazionale di Geofisica della Terra Solida (GNGTS). 17–19 November, Trieste63–70.
  33. MasoliM. and ZucchiM.L.1968. Paleontologia ed ecologia dei sedimenti attraversati dal pozzo S. Sabba 2 – Golfo di Trieste – Estratto dal Bollettino della Biblioteca e dei Musei Civici e delle Biennali d'arte antica.
  34. MosettiF.1966. Morfologia dell'Adriatico settentrionale. Bollettino di Geofisica Teorica ed ApplicataVIII, 30.
    [Google Scholar]
  35. MosettiF. and MorelliC.1968. Rilievo sismico continuo nel Golfo di Trieste. Andamento della formazione arenacea (Flysch) sotto il fondo marino nella zona tra Trieste, Monfalcone e Grado. Bollettino della Società Adriatica di ScienzeLVI, 42–57.
    [Google Scholar]
  36. MosherD.C. and SimpkinP.G.1999. Status and trends of marine high‐resolution seismic reflection profiling: data Acquisition. Geoscience Canada26, 174–188.
    [Google Scholar]
  37. NewtonR. and StefanonA.1975. The “Tegnue de Ciosa” area: patch reefs in the Northern Adriatic Sea. Marine Geology8, 27–33.
    [Google Scholar]
  38. OnofriR.1982. Caratteristiche geolitologiche e geomeccaniche del Flysch nella Provincia di Trieste. Studi Trentini Scienze Naturali, 59. Acta Geologica77–103.
    [Google Scholar]
  39. PandaS., LeBlancL.R. and SchockS.G.1994. Sediment classification based on impedance and attenuation estimation. The Journal of the Acoustical Society of America95, 3022–3055.
    [Google Scholar]
  40. PanieriG.2006. Foraminiferal response to an active methane seep environment: a case study from the Adriatic Sea. Marine Micropaleontology61, 116–130.
    [Google Scholar]
  41. PinsonL., HenstockT., DixJ. and BullJ.2008. Estimating quality factor and mean grain size of sediments from high‐resolution marine seismic data. Geophysics73, G19–G28.
    [Google Scholar]
  42. PolomU., HansenL., SauvinG., L'HereuxJ.S., LecomteI., KrawczykC.M.et al. 2010. Joint land and shallow‐marine seismic investigations of landslide processes in the Bay of Trondheim, Mid‐Norway. SAGEEP, 11.‐15.4.2010, Keystone, CO.
    [Google Scholar]
  43. ProvenzanoG., VardyM.E. and HenstockT.J.2017. Pre‐stack full waveform inversion of ultra‐high‐frequency marine seismic reflection data. Geophysical Journal International209, 1593–1611.
    [Google Scholar]
  44. RamsayP. and MillerW.2010. Multibeam and sub‐bottom profiling surveys for major port expansions. Position IT, 20 March Issue, 29–33.
    [Google Scholar]
  45. ReicheS., BerkelsB. and WeißB.2020. Automated static and moveout corrections of high‐resolution seismic data from the Baltic Sea. Near Surface Geophysics18, 23–37.
    [Google Scholar]
  46. RiedelM. and TheilenF.2001. AVO investigations of shallow marine sediments. Geophysical Prospecting49, 198–212.
    [Google Scholar]
  47. RonczkaM., WisenR. and DahlinT.2018. Geophysical pre‐investigation for a Stockholm tunnel project: joint inversion and interpretation of geoelectric and seismic refraction data in an urban environment. Near Surface Geophysics16, 258–268.
    [Google Scholar]
  48. SchockS., LeBlancL. and MayerL.1989. Chirp subottom profiler for quantitative sediment analysis. Geophysics54, 445–450.
    [Google Scholar]
  49. ScroccaD., DoglioniC. and InnocentiF.2003. Constraints for an interpretation of the Italian geodynamics: a review. Memorie Descrittive della Carta Geologica d'ItaliaLXII, 15–46.
    [Google Scholar]
  50. SeedR.B., CetinK.O., MossR.E.S., KammererA.M., WuJ., PestanaJ.M.et al. 2003. Recent advances in soil liquefaction engineering: A unified consistent framework. Report No. EERC 2003–06 College of Engineering University of California Berkeley.
  51. ShepardF.P.1954. Nomenclature based on sand‐silt‐clay ratios. Journal of Sedimentary Petrology24, 151–158.
    [Google Scholar]
  52. SherifM.A. and IshibashI.1978. Soil dynamics consideration for microzonation. Proceedings of the 2nd International Conference on Microzonation, San Francisco, vol. I, pp. 81–96.
  53. ShtivelmanV.2001. Shallow water seismic surveys for site investigation in the Haifa Port Extension area, Israel. Journal of Applied Geophysics46, 143–158.
    [Google Scholar]
  54. SkemptonA.W.1953. The colloidal activity of clays. Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering. Zurich, Switzerland, Icosomef, pp. 57–61.
  55. StefanonA.1980. The acoustic response of some gas‐charged sediments in the Northern Adriatic sea. Paper presented at Bottom Interacting Ocean Acoustic Conference, Saclant ASW Centre, La Spezia, Italy.
  56. StevensonI., McCannC. and RuncimanP.2002. An attenuation‐based sediment classification technique using Chirp sub‐bottom profiler data and laboratory acoustic analysis. Marine Geophysical Researches23, 277–298.
    [Google Scholar]
  57. StrobbiaC., GodioA. and de BaccoG.2006. Inversion of interfacial waves for the geotechnical characterisation of marine sediments in shallow water. Bollettino Di Geofisica Teorica Ed Applicata47, 145–162.
    [Google Scholar]
  58. SylwesterR.1985. Single channel, high resolution seismic reflection profiling: a review of fundamentals and instrumentation. In: CRC Handbook of Geophysical Exploration at Sea (ed Richard A.Geyer), pp. 77–122. CRC Press, Taylor & Francis Group, Boca Raton, FL.
    [Google Scholar]
  59. TrobecA., BusettiM., ZgurF., BaradelloL., BabichA., CovaA.et al. 2018. Thickness of marine Holocene sediment in the Gulf of Trieste (northern Adriatic Sea). Earth System Science Data10, 1077–1092.
    [Google Scholar]
  60. VardyM.E.2015. Deriving shallow‐water sediment properties using post‐stack acoustic impedance inversion. Near Surface Geophysics13, 143–154.
    [Google Scholar]
  61. VardyM.E., VannesteM., HenstockT.J., CalreM.A., ForsbergC.F. and ProvenzanoG.2017. State‐of‐the‐art remote characterization of shallow marine sediments: the road to a fully integrated solution. Near Surface Geophysics15, 387–402.
    [Google Scholar]
  62. VerhoefP.N.W.1997. Wear of Rock Cutting Tools: Implications for the Site Investigation of Rock Dredging Projects. A.A. Balkema, Rotterdam.
    [Google Scholar]
  63. VesnaverA. and BöhmG.2000. Staggered or adapted grids for seismic tomography?The Leading Edge9, 944–950.
    [Google Scholar]
  64. VlahovićI., TišljarJ., VelićI. and MatičecD.2005. Evolution of the Adriatic carbonate platform: paleogeography, main events and depositional dynamics. Paleogeography, Paleoclimatology, Paleoecology220, 333–360.
    [Google Scholar]
  65. VrabecM., SlavecP., PoglajenS. and BusettiM.2012. Geomorphology of submerged river channels indicates Late Quaternary tectonic activity in the Gulf of Trieste. Northern Adriatic Geophysical Research Abstracts14, EGU 2012–8124.
    [Google Scholar]
  66. WhiteleyR.J.2002. Integrating geophysical and geotechnical technologies for improved site assessment of ports and harbours. Proceeding of PIANC, 30th International Navigation Congress, Sydney, September 2002.
  67. ZecchinM., DondaF. and ForlinE.2017. Genesis of the Northern Adriatic Sea (Northern Italy) since early Pliocene. Marine and Petroleum Geology79, 108–130.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12084
Loading
/content/journals/10.1002/nsg.12084
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Geotechnical; Refraction; Seismic; Shallow marine; Site characterization

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error