1887
Volume 18, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

We apply seismic full waveform inversion to SH‐ and Love‐wave data for investigating the near‐surface lithology at an archaeological site. We evaluate the resolution of the applied full waveform inversion algorithm through ground truthing in the form of an excavation and sediment core studies. Thereby, we investigate the benefits of full waveform inversion in comparison with other established methods of near‐surface prospecting in terms of resolution capabilities and interpretation security. The study is performed in a presumed harbour area of the ancient Thracian city of Ainos. The exemplary target is the source of a linear magnetic anomaly oriented perpendicular to the coast, which was found in a previous magnetic gradiometry survey, suggesting a mole. The SH‐wave full waveform inversion recovered a subsurface SH‐wave velocity model with submeter resolution showing lateral and vertical velocity variation between 40 and 150 m/s. To tame the non‐linearity of the full waveform inversion, a sequential inversion of frequency bands has to be combined with time‐windowing in order to separate the Love wave from the reflected SH wavefield. We compare the full waveform inversion results with multichannel analysis of surface waves, standard seismic reflection imaging, electrical resistivity tomography and electromagnetic induction. It turns out that the respective depth sections are correlated to a certain degree with the full waveform inversion results. However, the structural resolution of the other geophysical methods is significantly lower than for the full waveform inversion. An exception is the reflection seismic imaging, which shows the same resolution as full waveform inversion but can only be interpreted together with the full waveform inversion–based velocity model. An archaeological excavation as well as coring data allows ground truthing and a direct understanding of the geophysical structures. The results show that the target was a sort of near‐surface trench of about 3–4 m width and 0.8 m to 1.0 m depth, filled with silty sediment, which differs from the layered surrounding in colour and composition. The ground truthing revealed that only SH‐wave full waveform inversion and seismic reflection imaging could image the trench and sediment structure with satisfying lateral and depth resolution. We emphasize that the velocity distribution from SH‐wave full waveform inversion agrees closely with the excavated subsurface structures, and that the discovered changes in seismic velocity correlate with changes in the sand content in the respective sediment facies sequences. The study demonstrated that SH‐wave full waveform inversion is capable to image structural and lithological changes in the near subsurface at scales as low as 0.5 m, thus providing the high resolution needed for archaeological and geoarchaeological prospection.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12097
2020-04-07
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/nsg/18/3/nsg12097.html?itemId=/content/journals/10.1002/nsg.12097&mimeType=html&fmt=ahah

References

  1. Aitken, M. (1958) Magnetic prospecting I. Archaeometry, 1, 24–29.
    [Google Scholar]
  2. Aki, K. and Richards, P. (1980) Quantitative Seismology. New York: W.H. Freeman and Company.
    [Google Scholar]
  3. Alam, M. (2019) Near‐surface characterisation using traveltime and full‐waveform inversion with vertical and horizontal component seismic data. Interpretation, 7, T141–T154.
    [Google Scholar]
  4. Anderson, W. (1989) A hybrid fast Hankel transform algorithm for electromagnetic modeling. Geophysics, 54, 263–266.
    [Google Scholar]
  5. Anzidei, M., Antonioli, F., Benini, A., Lambeck, K., Sivan, D., Serpelloni, E.et al. (2011) Sea level change and vertical land movements since the last two millennia along the coasts of southwestern Turkey and Israel. Quaternary International, 232, 13–20.
    [Google Scholar]
  6. Başaran, S. (1999) Zum Straßennetz um Ainos. In: (eds P.Scherrer, H.Täuber and H.Thür), Steine und Wege ‐ Festschrift Dieter Knibbe, pp. 343–348. Vienna, Austria: Österreichisches Archäologisches Institut.
    [Google Scholar]
  7. Başaran, S. (2001) The excavations at Enez (Ainos). In: İstanbul University's Contributions to Archaeology in Turkey 1932–2000 (ed. O.Belli), pp. 219–226. Istanbul, Turkey: Istanbul University Rectorate Publication No. 4285.
    [Google Scholar]
  8. Belshé, J. (1957) Recent magnetic investigations at Cambridge University. Advances in Physics, 6, 192–193.
    [Google Scholar]
  9. Bevan, B. and Kenyon, J. (1975) Ground‐penetrating radar for bistorical archaeology. Masca Newsletter, 11, 2–17.
    [Google Scholar]
  10. Bharadwaj, P., Drijkoningen, G., Mulder, W., Thorbecke, J., Neducza, B. and Jenneskens, R. (2017) A shear‐wave seismic system using full‐waveform inversion to look ahead of a tunnel‐boring machine. Near Surface Geophysics, 15, 210–224.
    [Google Scholar]
  11. Blott, S. and Pye, K. (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediment. Earth Surface Processes and Landforms, 26, 1237–1248.
    [Google Scholar]
  12. Bohlen, T. (2002) Parallel 3‐D viscoelastic finite difference seismic modelling. Computers & Geosciences, 28, 887–899.
    [Google Scholar]
  13. Bohlen, T., Kugler, S., Klein, G. and Theilen, F. (2004) 1.5 D inversion of lateral variation of Scholte‐wave dispersion. Geophysics, 69, 330–344.
    [Google Scholar]
  14. Bonsall, J., Fry, R., Gaffney, C., Armit, I., Beck, A. and Gaffney, V. (2013) Assessment of the CMD Mini‐Explorer, a new low‐frequency multi‐coil electromagnetic device, for archaeological investigations. Archaeological Prospection, 20, 219–231.
    [Google Scholar]
  15. Boyce, J., Reinhardt, E., Raban, A. and Pozza, M. (2004) Marine magnetic survey of a submerged Roman harbour, Caesarea Maritima, Israel. International Journal of Nautical Archaeology, 33, 122–136.
    [Google Scholar]
  16. Brückner, H., Schmidts, T., Bücherl, H., Pint, A. and Seeliger, M. (2015) Die Häfen und ufernahen Befestigungen von Ainos – eine Zwischenbilanz. In: (eds T.Schmidts and M.Vučetić), Häfen im 1. Millennium AD: bauliche Konzepte, herrschaftliche und religiöse Einflüsse, Interdisziplinäre Forschungen zu Häfen von der Römischen Kaiserzeit bis zum Mittelalter in Europa, Vol. 1 pp. 53–76. Mainz, Germany: Verlag des Römisch‐Germanischen Zentralmuseums.
    [Google Scholar]
  17. Bunks, C., Saleck, F., Zaleski, S. and Chavent, G. (1995) Multiscale seismic waveform inversion: Geophysics, 60, 1457–1473.
    [Google Scholar]
  18. Chen, J., Zelt, A. and Jaiswal, P. (2017) Detecting a known near‐surface target through application of frequency‐dependent traveltime tomography and full‐waveform inversion to P‐ and SH‐wave seismic refraction data. Geophysics, 82, R1–R17.
    [Google Scholar]
  19. Choi, Y. and Alkhalifah, T. (2012) Application of multi‐source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting, 60, 748–758.
    [Google Scholar]
  20. Constable, S., Parker, R. and Constable, C. (1987) Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300.
    [Google Scholar]
  21. Courant, R., Friedrichs, K. and Lewy, H. (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100, 32–74.
    [Google Scholar]
  22. Courant, R., Friedrichs, K. and Lewy, H. (1967) On the partial difference equations of mathematical physics. IBM journal of Research and Development, 11, 215–234.
    [Google Scholar]
  23. De Smedt, P., Saey, T., Lehouck, A., Stichelbaut, B., Meerschman, E., Islam, M.et al. (2013) Exploring the potential of multi‐receiver EMI survey for geoarchaeological prospection: A 90 ha dataset. Geoderma, 199, 30–36.
    [Google Scholar]
  24. De Smedt, P., Saey, T., Meerschman, E., De Reu, J., De Clercq, W. and Van Meirvenne, M. (2014) Comparing apparent magnetic susceptibility measurements of a multi‐receiver EMI sensor with topsoil and profile magnetic susceptibility data over weak magnetic anomalies. Archaeological Prospection, 21, 103–112.
    [Google Scholar]
  25. Dogan, M. and Papamarinopoulos, S. (2003) Geoelectric prospection of a city wall by multi‐electrode resistivity image survey at the prehistoric site of Asea (southern Greece). Archaeological Prospection, 10, 241–248.
    [Google Scholar]
  26. Dokter, E. (2015) 2D time domain waveform inversion of a near surface SH wave data set from Čachtice, Slovakia. Diploma thesis. Kiel University, Germany.
  27. Dokter, E., Köhn, D., Wilken, D., De Nil, D. and Rabbel, W. (2017) Full waveform inversion of SH‐and Love‐wave data in near‐surface prospecting. Geophysical Prospecting, 65, 216–236.
    [Google Scholar]
  28. Eberhart, R. and Kennedy, J. (1995) A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43.
  29. Engel, M., Knipping, M., Brückner, H., Kiderlen, M. and Kraft, J. (2009) Reconstructing middle to late Holocene palaeogeographies of the lower Messenian plain (southwestern Peloponnese, Greece): coastline migration, vegetation history and sea level change. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 257–270.
    [Google Scholar]
  30. Ernst, W. (1970) Geochemical Facies Analysis. Elsevier.
    [Google Scholar]
  31. Flemming, N. (1978) Holocene eustatic changes and coastal tectonics in the northeast Mediterranean: implications for models of crustal consumption. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 289, 405–458.
    [Google Scholar]
  32. Folk, R. and Ward, W. (1957) Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27, 3–26.
    [Google Scholar]
  33. Forbriger, T. (2003) Inversion of shallow‐seismic wavefields: I. Wavefield transformation. Geophysical Journal International, 153, 719–734.
    [Google Scholar]
  34. Forbriger, T., Groos, L. and Schäfer, M. (2014) Line‐source simulation for shallow‐seismic data. Part 1: Theoretical background. Geophysical Journal International, 198, 1387–1404.
    [Google Scholar]
  35. Gibson, T. (1986) Magnetic prospection on prehistoric sites in western Canada. Geophysics, 51, 553–560.
    [Google Scholar]
  36. Goodman, D. and Nishimura, Y. (1993) A ground‐radar view of Japanese burial mounds. Antiquity, 67, 349–354.
    [Google Scholar]
  37. Groos, L. (2013) 2D full waveform inversion of shallow seismic Rayleigh waves. PhD thesis, Karlsruhe Institute of Technology, Germany.
  38. Groos, L., Schäfer, M., Forbriger, T. and Bohlen, T. (2014) The role of attenuation in 2D full‐waveform inversion of shallow‐seismic body and Rayleigh waves. Geophysics, 79, R247–R261.
    [Google Scholar]
  39. Groos, L., Schäfer, M., Forbriger, T. and Bohlen, T. (2017) Application of a complete workflow for 2D elastic full‐waveform inversion to recorded shallow‐seismic Rayleigh waves. Geophysics, 82, R109–R117.
    [Google Scholar]
  40. Günther, T., Rücker, C. and Spitzer, K. (2006) Three‐dimensional modelling and inversion of DC resistivity data incorporating topography – II. Inversion. Geophysical Journal International, 166, 506–517.
    [Google Scholar]
  41. Hansen, P. and O'Leary, D. (1993) The use of the L‐curve in the regularization of discrete ill‐posed problems. SIAM Journal on Scientific Computing, 14, 1487–1503.
    [Google Scholar]
  42. Keay, S., Earl, G., Hay, S., Kay, S., Ogden, J. and Strutt, K. (2009) The role of integrated survey methods in the assessment of archaeological landscapes: the case of Portus. Archaeological Prospection, 16, 154–166.
    [Google Scholar]
  43. Köhn, D., De Nil, D., Kurzmann, A., Przebindowska, A. and Bohlen, T. (2012) On the influence of model parametrization in elastic full waveform tomography. Geophysical Journal International, 191, 325–345.
    [Google Scholar]
  44. Köhn, D., Kurzmann, A., De Nil, D. and Groos, L. (2014) DENISE – User Manual, available at https://danielkoehnsite.files.wordpress.com/2019/06/manual_denise.pdf.
  45. Köhn, D., Schwardt, M., Wilken, D., De Nil, D., Wunderlich, T., Rabbel, W.et al. (2017) SH‐Wellenforminversion in der oberflächennahen Geophysik. DGG‐Kolloquium: Neue Entwicklungen in der Angewandten Seismik, pp. 21–31. Deutsche Geophysikalische Gesellschaft.
  46. Köhn, D., Wilken, D., De Nil, D., Wunderlich, T., Rabbel, W. and Werther, L. (2018) 2D full waveform inversion applied to a strongly‐dispersive Love wave field dataset. 80th EAGE Conference and Exhibition, Porto, Portugal, Extended Abstracts.
  47. Köhn, D., Wilken, D., De Nil, D., Wunderlich, T., Rabbel, W., Werther, L.et al. (2019) Comparison of time‐domain SH waveform inversion strategies based on sequential low and bandpass filtered data for improved resolution in near‐surface prospecting. Journal of Applied Geophysics, 160, 69–83.
    [Google Scholar]
  48. Komatitsch, D. and Martin, R. (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 72, SM155–SM167.
    [Google Scholar]
  49. Krampe, V., Pan, Y. and Bohlen, T. (2019) Two‐dimensional elastic full‐waveform inversion of Love waves in shallow vertically transversely isotropic media: synthetic reconstruction tests. Near Surface Geophysics, 17, 449–461.
    [Google Scholar]
  50. Lange, G. and Jacobs, F. (2005) Gleichstromgeoelektrik. In: (eds K.Knödel, H.Krummel and G.Lange), Geophysik pp. 122–165. Berlin: Springer.
    [Google Scholar]
  51. Larson, D., Lipo, C. and Ambos, E. (2003) Application of advanced geophysical methods and engineering principles in an emerging scientific archaeology. First Break, 21, 51–62.
    [Google Scholar]
  52. Leucci, G., Greco, F., De Giorgi, L. and Mauceri, R. (2007) Three‐dimensional image of seismic refraction tomography and electrical resistivity tomography survey in the castle of Occhiola (Sicily, Italy). Journal of Archaeological Science, 34, 233–242.
    [Google Scholar]
  53. Levander, A. (1988) Fourth‐order finite‐difference P‐SV seismograms. Geophysics, 53, 1425–1436.
    [Google Scholar]
  54. McMechan, G. and Yedlin, M. (1981) Analysis of dispersive waves by wave field transformation. Geophysics, 46, 869–874.
    [Google Scholar]
  55. Mohamed, A., El‐Hussain, I., Deif, A., Araffa, S., Mansour, K. and Al‐Rawas, G. (2019) Integrated ground penetrating radar, electrical resistivity tomography and multichannel analysis of surface waves for detecting near‐surface caverns at Duqm area, Sultanate of Oman. Near Surface Geophysics, 17, 379–401.
    [Google Scholar]
  56. Neidel, N. and Tanner, M. (1971) Semblance and other coherency measure for multichannel data. Geophysics, 36, 482–497.
    [Google Scholar]
  57. Neubauer, W. (2001) Magnetische Prospektion in der Archäologie. Verlag der Österreichischen Akademie der Wissenschaften.
  58. Nguyen, T., Tran, K. and McVay, M. (2016) Evaluation of unknown foundations using surface‐based full waveform tomography. Journal of Bridge Engineering, 21, 04016013.
    [Google Scholar]
  59. Nocedal, J. and Wright, S. (2006) Numerical Optimization. New York: Springer.
    [Google Scholar]
  60. Oldenburg, D. and Li, Y. (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64, 403–416.
    [Google Scholar]
  61. Pan, Y., Gao, L. and Bohlen, T. (2017) Sequential phase‐velocity and waveform inversion of shallow‐seismic surface waves ‐ a field example for Bedrock Mapping. 23rd European Meeting of Environmental and Engineering Geophysics, Extended Abstract.
  62. Paoletti, V., Secomandi, M., Piromallo, M., Giordano, F., Fedi, M. and Rapolla, A. (2005) Magnetic survey at the submerged archaeological site of Baia, Naples, Southern Italy. Archaeological Prospection, 12, 51–59.
    [Google Scholar]
  63. Papadopoulos, N., Tsourlos, P., Tsokas, G. and Sarris, A. (2006) Two‐dimensional and three‐dimensional resistivity imaging in archaeological site investigation. Archaeological Prospection, 13, 163–181.
    [Google Scholar]
  64. Rabbel, W., Erkul, E., Stümpel, H., Wunderlich, T., Pašteka, R., Papco, J.et al. (2015b) Discovery of a Byzantine Church in Iznik/Nicaea, Turkey: an educational case history of geophysical prospecting with combined methods in urban areas. Archaeological Prospection, 22, 1–20.
    [Google Scholar]
  65. Rabbel, W. and Müller‐Karpe, A. (2004) Trecker und Sensoren – Geophysik erforscht antike Siedlungsräume. In: Alte Fragen – neue Antworten. Neue naturwissenschaftliche Methoden und Technologien in den Geisteswissenschaften, pp. 102–107. Bundesministerium für Bildung und Forschung.
    [Google Scholar]
  66. Rabbel, W., Stümpel, H. and Woelz, S. (2004) Archeological prospecting with magnetic and shear‐wave surveys at the ancient city of Miletos (western Turkey). The Leading Edge, 23, 690–703.
    [Google Scholar]
  67. Rabbel, W., Wilken, D., Wunderlich, T., Bödecker, S., Brückner, H., Byock, J.et al. (2015a) Geophysikalische Prospektion von Hafensituationen – Möglichkeiten, Anwendungen und Forschungsbedarf. In: (eds T.Schmidts and M.Vučetić), Häfen im 1. Millennium AD: bauliche Konzepte, herrschaftliche und religiöse Einflüsse, Interdisziplinäre Forschungen zu Häfen von der Römischen Kaiserzeit bis zum Mittelalter in Europa, Vol. 1, pp. 323–340. Mainz, Germany: Verlag des Römisch‐Germanischen Zentralmuseums.
    [Google Scholar]
  68. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell'Aversana, P. (2004) Multiscale imaging of complex structures from multifold wide‐aperture seismic data by frequency‐domain full‐waveform tomography: application to a thrust belt. Geophysical Journal International, 159, 1032–1056.
    [Google Scholar]
  69. Reinsch, D. (1983) Critobuli Imbriotae Historiae. Berlin: Walter de Gruyter.
    [Google Scholar]
  70. Rizzo, E., Chianese, D. and Lapenna, V. (2005) Magnetic, GPR and geoelectrical measurements for studying the archaeological site of ‘Masseria Nigro’ (Viggiano, southern Italy). Near Surface Geophysics, 3, 13–19.
    [Google Scholar]
  71. Robertsson, J. (1996) A numerical free‐surface condition for elastic/viscoelastic finite‐difference modelling in the presence of topography. Geophysics, 61, 1921–1934.
    [Google Scholar]
  72. Schäfer, M. (2014) Application of full‐waveform inversion to shallow‐seismic Rayleigh waves on 2D structures. PhD thesis, Karlsruhe Institute of Technology.
  73. Schön, J. (2015) Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Elsevier.
    [Google Scholar]
  74. Seeliger, M., Bartz, M., Erkul, E., Feuser, S., Kelterbaum, D., Klein, C.et al. (2013) Taken from the sea, reclaimed by the sea: The fate of the closed harbour of Elaia, the maritime satellite city of Pergamum (Turkey). Quaternary International, 312, 70–83.
    [Google Scholar]
  75. Seeliger, M., Pint, A., Frenzel, P., Feuser, S., Pirson, F., Riedesel, S.et al. (2017) Foraminifera as markers of Holocene sea‐level fluctuations and water depths of ancient harbours—a case study from the Bay of Elaia (W Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 482, 17–29.
    [Google Scholar]
  76. Seeliger, M., Pint, A., Frenzel, P., Weisenseel, P., Erkul, E., Wilken, D.et al. (2018) Using a multi‐proxy approach to detect and date a buried part of the Hellenistic City Wall of Ainos (NW Turkey). Geosciences, 8, 357.
    [Google Scholar]
  77. Socco, L., Foti, S. and Boiero, D. (2010) Surface‐wave analysis for building near‐surface velocity models – established approaches and new perspectives. Geophysics, 75, A83–A102.
    [Google Scholar]
  78. Sponagel, H. (2005) Ad‐hoc‐Arbeitsgruppe Boden der staatlichen geologischen Dienste und der Bundesanstalt für Geowissenschaften und Rohstoffe Bodenkundliche Kartieranleitung.
  79. Stümpel, H. (1988) Erdradar: Ein neues Prospektionsverfahren in der Archäologie. Archäologie in Deutschland, 1, 28–31.
    [Google Scholar]
  80. Talwani, M. and Heirtzler, J. (1964) Computation of magnetic anomalies caused by two‐dimensional bodies of arbitrary shape. Computers in the Mineral Industries, 1, 464–480.
    [Google Scholar]
  81. Tarantola, A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation, Vol. 89. Philadelphia: SIAM.
    [Google Scholar]
  82. Tran, K. and McVay, M. (2012) Site characterization using Gauss–Newton inversion of 2‐D full seismic waveform in the time domain. Soil Dynamics and Earthquake Engineering, 43, 16–24.
    [Google Scholar]
  83. Tran, K., McVay, M., Faraone, M. and Horhota, D. (2013) Sinkhole detection using 2D full seismic waveform tomography. Geophysics, 78, R175–R183.
    [Google Scholar]
  84. Tran, K. and Sperry, J. (2018) Application of 2D full‐waveform tomography on land‐streamer data for assessment of roadway subsidence. Geophysics, 83, EN1–EN11.
    [Google Scholar]
  85. Vafidis, A., Economou, N., Ganiatsos, Y., Manakou, M., Poulioudis, G., Sourlas, G.et al. (2005) Integrated geophysical studies at ancient Itanos (Greece). Journal of Archaeological Science, 32, 1023–1036.
    [Google Scholar]
  86. Vickers, R. and Dolphin, L. (1975) A communication on an archaeological radar experiment at Chaco Canyon, New Mexico. MASCA Newsletter, 11, 3–3.
    [Google Scholar]
  87. Virieux, J. (1984) SH‐wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics, 49, 1933–1942.
    [Google Scholar]
  88. Virieux, J. and Operto, S. (2009) An overview of full waveform inversion in exploration geophysics. Geophysics, 74, WCC1–WCC26.
    [Google Scholar]
  89. von Carnap‐Bornheim, C. and Kalmring, S. (2011) DFG‐Schwerpunktprogramm 1630. Häfen von der Römischen Kaiserzeit bis zum Mittelalter. Zur Archäologie und Geschichte regionaler und überregionaler Verkehrssysteme. In: Annual Report Centre for Baltic and Scandinavian Archaeology, pp. 28–31.
  90. von Ketelhodt, J., Fechner, T., Manzi, M. and Durrheim, R. (2018) Joint inversion of cross‐borehile P‐waves, horizontally and vertically polarized S‐waves: tomographic data for hydro‐geophysical site characterization. Near Surface Geophysics, 16, 529–542.
    [Google Scholar]
  91. Vött, A., Bareth, G., Brückner, H., Lang, F., Sakellariou, D., Hadler, H.et al. (2011) Olympia's harbour site Pheia (Elis, western Peloponnese, Greece) destroyed by tsunami impact. Die Erde, 142, 259–288.
    [Google Scholar]
  92. Wilken, D. and Rabbel, W. (2012) On the application of particle swarm optimization strategies on Scholte‐wave inversion. Geophysical Journal International, 190, 580–594.
    [Google Scholar]
  93. Wilken, D., Wunderlich, T., Andersen, J. and Rabbel, W. (2015a) Geophysical investigation of past harbours: challenges and application examples. Proceedings of the 11th International Conference on Archaeological Prospection, 526–527. Warsaw, Poland.
  94. Wilken, D., Wunderlich, T., Majchczack, B., Andersen, J. and Rabbel, W. (2015b) Rayleigh‐wave resonance analysis: a methodological test on a Viking Age pit house. Archaeological Prospection, 22, 187–206.
    [Google Scholar]
  95. Woelz, S. and Rabbel, W. (2005) Seismic prospecting in archaeology: a 3D shear‐wave study of the ancient harbour of Miletus (Turkey). Near Surface Geophysics, 3, 245–257.
    [Google Scholar]
  96. Woelz, S., Rabbel, W. and Mueller, C. (2009) Shear waves in near surface 3D media–SH–wavefield separation, refraction time migration and tomography. Journal of Applied Geophysics, 68, 104–116.
    [Google Scholar]
  97. Wunderlich, T., Wilken, D., Andersen, J., Rabbel, W., Zori, D., Kalmring, S.et al. (2015) On the ability of geophysical methods to image medieval turf buildings in Iceland. Archaeological Prospection, 22, 171–186.
    [Google Scholar]
  98. Wunderlich, T., Wilken, D., Erkul, E., Rabbel, W., Vött, A., Fischer, P.et al. (2018) The river harbour of Ostia Antica‐stratigraphy, extent and harbour infrastructure from combined geophysical measurements and drillings. Quaternary International, 473, 55–65.
    [Google Scholar]
  99. Yang, P., Brossier, R., Métivier, L. and Virieux, J. (2016) A review on the systematic formulation of 3‐D multiparameter full waveform inversion in viscoelastic medium. Geophysical Journal International, 207, 129–149.
    [Google Scholar]
  100. Zhang, F., Lui, B., Lui, L., Wang, J., Lin, C., Yang, L.et al. (2019) Application of ground penetrating radar to detect tunnel lining defects based on improved full waveform inversion and reverse time migration. Near Surface Geophysics, 17, 127–139.
    [Google Scholar]
  101. Zhang, Z., Huang, L. and Lin, Y. (2012) Double‐difference elastic‐waveform inversion with weighted gradients for monitoring EGS reservoirs. In Thirty‐Seventh Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University.
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12097
Loading
/content/journals/10.1002/nsg.12097
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Archaeogeophysics , Full waveform , Interpretation , Inversion and Tomography
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error