1887
Volume 18, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

We compare two Monte Carlo inversions that aim to solve some of the main problems of dispersion curve inversion: deriving reliable uncertainty appraisals, determining the optimal model parameterization and avoiding entrapment in local minima of the misfit function. The first method is a transdimensional Markov chain Monte Carlo that considers as unknowns the number of model parameters, that is the locations of layer boundaries together with the and the / ratio of each layer. A reversible‐jump Markov chain Monte Carlo algorithm is used to sample the variable‐dimension model space, while the adoption of a parallel tempering strategy and of a delayed rejection updating scheme improves the efficiency of the probabilistic sampling. The second approach is a Hamiltonian Monte Carlo inversion that considers the , the / ratio and the thickness of each layer as unknowns, whereas the best model parameterization (number of layer) is determined by applying standard statistical tools to the outcomes of different inversions running with different model dimensionalities. This work has a mainly didactic perspective and, for this reason, we focus on synthetic examples in which only the fundamental mode is inverted. We perform what we call semi‐analytical and seismic inversion tests on 1D subsurface models. In the first case, the dispersion curves are directly computed from the considered model making use of the Haskell–Thomson method, while in the second case they are extracted from synthetic shot gathers. To validate the inversion outcomes, we analyse the estimated posterior models and we also perform a sensitivity analysis in which we compute the model resolution matrices, posterior covariance matrices and correlation matrices from the ensembles of sampled models. Our tests demonstrate that major benefit of the transdimensional inversion is its capability of providing a parsimonious solution that automatically adjusts the model dimensionality. The downside of this approach is that many models must be sampled to guarantee accurate posterior uncertainty. Differently, less sampled models are required by the Hamiltonian Monte Carlo algorithm, but its limits are the computational effort related to the Jacobian computation, and the multiple inversion runs needed to determine the optimal model parameterization.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12100
2020-04-07
2020-10-27
Loading full text...

Full text loading...

References

  1. Aleardi, M. (2015) The importance of the Vp/Vs ratio in determining the error propagation, the stability and the resolution of linear AVA inversion: a theoretical demonstration. Bollettino di Geofisica Teorica ed Applicata, 56(3), 357–366.
    [Google Scholar]
  2. Ando, T. (2010) Bayesian Model Selection and Statistical Modeling. Chapman and Hall/CRC.
    [Google Scholar]
  3. Aster, R.C., Borchers, B. and Thurber, C.H. (2018) Parameter Estimation and Inverse Problems. Elsevier.
    [Google Scholar]
  4. Betancourt, M. (2017) A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434.
  5. Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer.
    [Google Scholar]
  6. Blanes, S., Casas, F. and Sanz‐Serna, J.M. (2014) Numerical integrators for the Hybrid Monte Carlo method. SIAM Journal on Scientific Computing, 36(4), A1556–A1580.
    [Google Scholar]
  7. Bodin, T. and Sambridge, M. (2009) Seismic tomography with the reversible jump algorithm. Geophysical Journal International, 178(3), 1411–1436.
    [Google Scholar]
  8. Bodin, T., Sambridge, M., Tkalčić, H., Arroucau, P., Gallagher, K. and Rawlinson, N. (2012) Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research: Solid Earth, 117, B02301.
    [Google Scholar]
  9. Boiero, D., Bergamo, P., Bruno Rege, R. and Socco, L.V. (2011) Estimating surface‐wave dispersion curves from 3D seismic acquisition schemes: Part 1—1D models. Geophysics, 76(6), G85–G93.
    [Google Scholar]
  10. Cercato, M. (2011) Global surface wave inversion with model constraints. Geophysical Prospecting, 59(2), 210–226.
    [Google Scholar]
  11. Cho, Y., GibsonJr, R.L. and Zhu, D. (2018) Quasi 3D transdimensional Markov‐chain Monte Carlo for seismic impedance inversion and uncertainty analysis. Interpretation, 6(3), T613–T624.
    [Google Scholar]
  12. Dadi, S., Gibson, R. and Wang, K. (2016) Velocity log upscaling based on reversible jump Markov chain Monte Carlo simulated annealing RJMCMC‐based sonic log upscaling. Geophysics, 81(5), R293–R305.
    [Google Scholar]
  13. Dal MoroG., PipanM. and GabrielliP. (2007) Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. Journal of Applied Geophysics61, 39–55.
    [Google Scholar]
  14. Dettmer, J., Molnar, S., Steininger, G., Dosso, S.E. and Cassidy, J.F. (2012) Trans‐dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models. Geophysical Journal International, 188(2), 719–734.
    [Google Scholar]
  15. Di Giulio, G., Punzo, M., Bruno, P.P., Cara, F. and Rovelli, A. (2019) Using a vibratory source at Mt. Etna (Italy) to investigate the wavefield polarization at Pernicana Fault. Near Surface Geophysics, 17(4), 313–329.
    [Google Scholar]
  16. Dosso, S.E., Dettmer, J., Steininger, G. and Holland, C.W. (2014) Efficient trans‐dimensional Bayesian inversion for geoacoustic profile estimation. Inverse Problems, 30(11), 114018.
    [Google Scholar]
  17. Dosso, S.E., Holland, C.W. and Sambridge, M. (2012) Parallel tempering for strongly nonlinear geoacoustic inversion. The Journal of the Acoustical Society of America, 132(5), 3030–3040.
    [Google Scholar]
  18. Duane, S., Kennedy, A.D., Pendleton, B.J. and Roweth, D. (1987) Hybrid Monte Carlo. Physics Letters B, 195, 216–222.
    [Google Scholar]
  19. Farrugia, D., Paolucci, E., D'Amico, S. and Galea, P. (2016) Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low‐velocity layer. Geophysical Journal International, 206(2), 1221–1231.
    [Google Scholar]
  20. FengS., SugiyamaT. and YamanakaH. (2005) Effectiveness of multimode surface wave inversion in shallow engineering site investigations. Exploration Geophysics36, 26–33.
    [Google Scholar]
  21. Fernandez Martinez, J.L., Fernandez Muniz, M.Z. and Tompkins, M.J. (2012) On the topography of the cost functional in linear and nonlinear inverse problems. Geophysics, 77(1), W1–W15.
    [Google Scholar]
  22. Fichtner, A., Zunino, A. and Gebraad, L. (2019) Hamiltonian Monte Carlo solution of tomographic inverse problems. Geophysical Journal International, 216(2), 1344–1363.
    [Google Scholar]
  23. Fichtner, A. and Simutė, S. (2018) Hamiltonian Monte Carlo inversion of seismic sources in complex media. Journal of Geophysical Research: Solid Earth, 123(4), 2984–2999.
    [Google Scholar]
  24. Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.Y.et al. (2018) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16(6), 2367–2420.
    [Google Scholar]
  25. Galetti, E. and Curtis, A. (2018) Transdimensional electrical resistivity tomography. Journal of Geophysical Research: Solid Earth, 123(8), 6347–6377.
    [Google Scholar]
  26. Galetti, E., Curtis, A., Baptie, B., Jenkins, D. and Nicolson, H. (2016) Transdimensional Love‐wave tomography of the British Isles and shear‐velocity structure of the East Irish Sea Basin from ambient‐noise interferometry. Geophysical Journal International, 208(1), 36–58.
    [Google Scholar]
  27. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B. (2013) Bayesian Data Analysis, 3rd edition. CRC Press.
    [Google Scholar]
  28. Geyer, C.J. and Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scandinavian Journal of Statistics, 21, 359–373.
    [Google Scholar]
  29. Girolami, M. and Calderhead, B. (2011) Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B, 73(2), 123–214.
    [Google Scholar]
  30. Graham, M.M. and Storkey, A.J. (2017) Continuously tempered Hamiltonian Monte Carlo. arXiv preprint arXiv:1704.03338.
  31. Green, P.J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.
    [Google Scholar]
  32. Groos, L., Schäfer, M., Forbriger, T. and Bohlen, T. (2017) Application of a complete workflow for 2D elastic full‐waveform inversion to recorded shallow‐seismic Rayleigh waves. Geophysics, 82(2), R109–R117.
    [Google Scholar]
  33. Fernández‐Martínez, J.L. (2015) Model reduction and uncertainty analysis in inverse problems. The Leading Edge, 34(9), 1006–1016.
    [Google Scholar]
  34. Hansen, T.M. and Cordua, K.S. (2017) Efficient Monte Carlo sampling of inverse problems using a neural network‐based forward—applied to GPR crosshole traveltime inversion. Geophysical Journal International, 211(3), 1524–1533.
    [Google Scholar]
  35. Haskell, N.A. (1953) The dispersion of surface waves on multi‐layered media. Bulletin of the Seismological Society of America43, 17–34.
    [Google Scholar]
  36. Hoffman, M.D. and Gelman, A. (2014) The no‐U‐turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593–1623.
    [Google Scholar]
  37. Kritikakis, G., Vafidis, A., Papakonstantinou, K. and O'Neill, A. (2014) Comparative study of different inversion techniques applied on Rayleigh surface wave dispersion curves. Near Surface Geophysics, 12(3), 361–371.
    [Google Scholar]
  38. LukeB., Calderón‐MacíasC., StoneR.C. and HuynhM. (2003) Nonuniqueness in inversion of seismic surface‐wave data. Proceedings of Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), Denver, pp. 1342–1347. Environmental and Engineering Geophysical Society.
  39. Luo, Y., Xia, J., Miller, R.D., Xu, Y., Liu, J. and Liu, Q. (2009) Rayleigh‐wave mode separation by high‐resolution linear Radon transform. Geophysical Journal International, 179(1), 254–264.
    [Google Scholar]
  40. MacKay, D.J. (2003) Information Theory, Inference and Learning Algorithms. Cambridge University Press.
    [Google Scholar]
  41. Mackenze, P.B. (1989) An improved hybrid Monte Carlo method. Physics Letters B, 226(3–4), 369–371.
    [Google Scholar]
  42. Malinverno, A. (2000) A Bayesian criterion for simplicity in inverse problem parametrization. Geophysical Journal International, 140(2), 267–285.
    [Google Scholar]
  43. Malinverno, A. and Briggs, V.A. (2004) Expanded uncertainty quantification in inverse problems: hierarchical Bayes and empirical Bayes. Geophysics, 69(4), 1005–1016.
    [Google Scholar]
  44. Mallick, S. and Frazer, L.N. (1987) Practical aspects of reflectivity modeling. Geophysics, 52, 1355–1364.
    [Google Scholar]
  45. Mandolesi, E., Ogaya, X., Campanyà, J. and Agostinetti, N.P. (2018) A reversible‐jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data. Computers and Geosciences, 113, 94–105.
    [Google Scholar]
  46. Maraschini, M. and Foti, S. (2010) A Monte Carlo multimodal inversion of surface waves. Geophysical Journal International, 182(3), 1557–1566.
    [Google Scholar]
  47. Menke, W. (2018) Geophysical Data Analysis: Discrete Inverse Theory. Academic Press.
    [Google Scholar]
  48. Mosegaard, K. and Sambridge, M. (2002) Monte Carlo analysis of inverse problems. Inverse Problems, 18(3), R29.
    [Google Scholar]
  49. Mosegaard, K. and Tarantola, A. (1995) Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth, 100(B7), 12431–12447.
    [Google Scholar]
  50. Muir, J.B. and Tkalcic, H. (2015) Probabilistic joint inversion of lowermost mantle P‐wave velocities and core mantle boundary topography using differential travel times and hierarchical Hamiltonian Monte‐Carlo sampling, in AGU 2015 Fall meeting, San Francisco.
  51. Neal, R.M. (1996) Bayesian Learning for Neural Networks. Paris: Springer.
    [Google Scholar]
  52. Neal, R.M. (2011) MCMC using Hamiltonian dynamics. In: Brooks, S., Gelman, A., Jones, G. and Meng, X.‐L. (Eds.)Handbook of Markov Chain Monte Carlo. Chapman and Hall, pp. 113–162.
    [Google Scholar]
  53. Nishimura, A. and Dunson, D. (2016) Geometrically tempered Hamiltonian Monte Carlo. arXiv preprint arXiv:1604.00872.
  54. Picozzi, M. and Albarello, D. (2007) Combining genetic and linearized algorithms for a two‐step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves. Geophysical Journal International, 169(1), 189–200.
    [Google Scholar]
  55. Qiu, X., Wang, Y. and Wang, C. (2019) Rayleigh‐wave dispersion analysis using complex‐vector seismic data. Near Surface Geophysics, 17(5), 487–499.
    [Google Scholar]
  56. Ray, A.K. and Chopra, S. (2016) Building more robust low‐frequency models for seismic impedance inversion. First Break, 34(5), 47–52.
    [Google Scholar]
  57. Ray, A., Sekar, A., Hoversten, G.M. and Albertin, U. (2016). Frequency domain full waveform elastic inversion of marine seismic data from the Alba field using a Bayesian trans‐dimensional algorithm. Geophysical Journal International, 205(2), 915–937.
    [Google Scholar]
  58. Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm–II. Appraising the ensemble. Geophysical Journal International, 138(3), 727–746.
    [Google Scholar]
  59. Sambridge, M. (2014) A parallel tempering algorithm for probabilistic sampling and multimodal optimization. Geophysical Journal International, 196(1), 357–374.
    [Google Scholar]
  60. Sambridge, M., Gallagher, K., Jackson, A. and Rickwood, P. (2006) Trans‐dimensional inverse problems, model comparison and the evidence. Geophysical Journal International, 167(2), 528–542.
    [Google Scholar]
  61. Sambridge, M. and Mosegaard, K. (2002) Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3), 3–1.
    [Google Scholar]
  62. Sajeva, A., Aleardi, M., Mazzotti, A., Stucchi, E. and Galuzzi, B. (2014) Comparison of stochastic optimization methods on two analytic objective functions and on a 1D elastic FWI. In 76th EAGE Conference and Exhibition 2014. https://doi.org/10.3997/2214-4609.20140857.
  63. Sajeva, A. and Menanno, G. (2017) Characterisation and extraction of a Rayleigh‐wave mode in vertically heterogeneous media using quaternion SVD. Signal Processing, 136, 43–58.
    [Google Scholar]
  64. Sajeva, A., AleardiM., Galuzzi, B., Stucchi, E., Spadavecchia, E. and Mazzotti, A. (2017) Comparing the performances of four stochastic optimisation methods using analytic objective functions, 1D elastic full‐waveform inversion, and residual static computation. Geophysical Prospecting, 65, 322–346.
    [Google Scholar]
  65. Scalzo, R., Kohn, D., Olierook, H., Houseman, G., Chandra, R., Girolami, M. and Cripps, S. (2019) Efficiency and robustness in Monte Carlo sampling for 3‐D geophysical inversions with Obsidian v0. 1.2: setting up for success. Geoscientific Model Development, 12(7), 2941–2960.
    [Google Scholar]
  66. Schwartz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
    [Google Scholar]
  67. Sen, M.K. and Biswas, R. (2017) Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm. Geophysics, 82(3), R119–R134.
    [Google Scholar]
  68. Sen, M.K. and StoffaP.L., (2013) Global Optimization Methods in Geophysical Inversion. Cambridge: Cambridge University Press.
    [Google Scholar]
  69. Sen, M.K. and Roy, I.G. (2003) Computation of differential seismograms and iteration adaptive regularization in prestack waveform inversion. Geophysics, 68(6), 2026–2039.
    [Google Scholar]
  70. Sen, M.K. and Stoffa, P.L. (1996) Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion. Geophysical Prospecting, 44(2), 313–350.
    [Google Scholar]
  71. Sisson, S.A. (2005) Transdimensional Markov chains: a decade of progress and future perspectives. Journal of the American Statistical Association, 100(471), 1077–1089.
    [Google Scholar]
  72. Socco, L.V. and Boiero, D. (2008) Improved Monte Carlo inversion of surface wave data. Geophysical Prospecting, 56(3), 357–371.
    [Google Scholar]
  73. SoccoL.V. and StrobbiaC. (2004) Surface‐wave method for near‐surface characterization: a tutorial. Near Surface Geophysics2, 165–185.
    [Google Scholar]
  74. Steininger, G., Dettmer, J., Dosso, S.E. and Holland, C.W. (2013) Transdimensional joint inversion of seabed scattering and reflection data. Journal of the Acoustic Society of America, 133, 1347–1357.
    [Google Scholar]
  75. Tarantola, A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM.
    [Google Scholar]
  76. Theune, U., Jensås, I.Ø. and Eidsvik, J. (2010) Analysis of prior models for a blocky inversion of seismic AVA data. Geophysics, 75(3), C25–C35.
    [Google Scholar]
  77. Vrugt, J.A. (2016) Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation. Environmental Modelling and Software, 75, 273–316.
    [Google Scholar]
  78. Wathelet, M. (2005) Array recordings of ambient vibrations: surfacewave inversion. Phd thesis, Université de Liège, France.
  79. Xia, J., Miller, R.D., Park, C.B. and Tian, G. (2003) Inversion of high frequency surface waves with fundamental and higher modes. Journal of Applied Geophysics, 52(1), 45–57.
    [Google Scholar]
  80. Xiang, E., Guo, R., Dosso, S.E., Liu, J., Dong, H. and Ren, Z. (2018) Efficient hierarchical trans‐dimensional Bayesian inversion of magnetotelluric data. Geophysical Journal International, 213(3), 1751–1767.
    [Google Scholar]
  81. Xing, Z. and Mazzotti, A. (2018) Two‐grid genetic algorithm full waveform inversion of surface waves: two actual data examples. In 80th EAGE Conference and Exhibition 2018.
  82. Zhu, D. and Gibson, R. (2018) Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method. Geophysics, 83(4), R321–R334.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12100
Loading
/content/journals/10.1002/nsg.12100
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Inversion , Surface wave and Uncertainty
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error