1887
Volume 18, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

To derive reliable electrical resistivity subsurface models using error‐weighted inversion schemes, a meaningful and correct error model is required. An over‐estimated error leads to a lack of resolution and reduced target detectability. Furthermore, biased data are easily overlooked and can lead to artefacts and significant miss‐interpretation. We carried out an electrical resistivity tomography survey to detect mining tunnels of World War I in La Boisselle, France. French, British and German troops extensively used mining warfare, such as tunnel constructions, to undermine opponents. While the location and orientation of some British tunnels are known from archaeological excavations, the exact location of the German tunnels is currently unknown. Due to systematic measurement errors resulting from a malfunction in the system, the acquired electrical resistivity tomography data in La Boisselle were significantly biased. Therefore, a detailed systematic error analysis scheme was developed. Using a workflow of systematic error examination to identify biased data such as outliers or other bias, an unbiased dataset was retrieved. Subsequently, two‐dimensional electrical resistivity tomography inversions using different error models provided a qualitative estimate of how the data errors influence the tunnel detectability within an inversion scheme. The field data from La Boisselle demonstrates the importance of correctly estimating measurement errors, especially in view of the detection of small‐scale targets, such as tunnels.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12105
2020-06-07
2020-10-27
Loading full text...

Full text loading...

References

  1. ABEM.
    ABEM. (2010) Instruction manual Terrameter SAS 4000. ABEM Instrument AB, Sundbyberg Municipality, Stockholm, Sweden.
  2. Anderson, N., Cardimona, S. and Newton, T. (2003) Application of innovative nondestructive methods to geotechnical and environmental investigations, Technical Report No. RDT‐03‐008, University of Misssouri‐Rolla.
  3. Anderson, N., Croxton, N., Hoover, R. and Shirles, P. (2008) Geophysical methods commonly employed for geotechnical site characterization, Transportation research circular E‐C130. Transportation Research Board of the National Academies.
  4. Ballard, R.F. (1982) Tunnel detection. U. S. Army Engineer Waterways Experiment Station. Technical report GL‐82‐9.
  5. Binley, A., Ramirez, A. and Daily, W. (1995) Regularised image reconstruction of noisy electrical resistance tomography data. Proceedings of the 4th Workshop of the European Concerted Action on Process Tomography, Bergen, pp. 401–410.
  6. Byledbal, A., Rakowski, D., Barton, P., Jones, S., Banning, J., McHenry, I., Porter, J. and Porter, R. (2012) La Boisselle Study Group Archaeological report: 2012.
  7. Chalikakis, K., Plagnes, V., Guerin, R., Valois, R. and Bosch, F.P. (2011) Contribution of geophysical methods to karst‐system exploration: an overview. Hydrogeology Journal, 19, 1169–1180.
    [Google Scholar]
  8. Constable, S.C., Parker, R.L. and Constable, C.G. (1987) Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300.
    [Google Scholar]
  9. Dahlin, T. (2001) The development of DC resistivity imaging techniques. Computers & Geosciences, 27, 1019–1029.
    [Google Scholar]
  10. Dahlin, T. and Zhou, B. (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52, 379–398.
    [Google Scholar]
  11. Dahlin, T. and Loke, M.H. (2018) Underwater ERT surveying in water with resistivity layering with example of application to site investigation for a rock tunnel in central Stockholm. Near Surface Geophysics, 16(3), 230–237.
    [Google Scholar]
  12. El‐Qady, G., Hafez, M., Abdalla, M.A. and Ushijima, K. (2005) Imaging subsurface cavities using geoelectric tomography and ground‐penetrating radar. Journal of Cave and Karst Studies, 67, 174–181.
    [Google Scholar]
  13. Géoportail
    Géoportail (2018) http://www.geoportail.gouv.fr/carte/ [accessed 22 February 2018].
  14. Guerin, R. and Benderitter, Y. (1995) Shallow karst exploration using MT‐VLF and DC resistivity methods. Geophysical Prospecting, 43, 635–653.
    [Google Scholar]
  15. Günther, T. (2004) Inversion Methods and Resolution Analysis for the 2D/3D Reconstruction of Resistivity Structures from DC Measurements, Dissertation, TU Freiberg.
  16. Günther, T. (2007) Software DC2DINVRES. Direct current 2D inversion and resolution. http://www.resistivity.net./dc2dinvres/ [accessed 18 June 2018]
  17. La Boiselle Study Group
    La Boiselle Study Group . (2011) Archaeological dig reports. http://www.laboiselleproject.com/archaeological-dig-reports [accessed 2018 Feb 22]
  18. LaBrecque, D.J., Miletto, M., Daily, W., Ramirez, A. and Owen, E. (1996) The effects of noise on Occam's inversion of resistivity tomography data. Geophysics, 61(2), 538–548.
    [Google Scholar]
  19. Landolt‐Börnstein
    Landolt‐Börnstein (1952) Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik, Technik. Band III Astrophysik und Geophysik. Springer Verlag.
  20. Llopis, J.L., Dunbar, J.B., Wakeley, L.D., Corcoran, M.K., and Butler, D.K. (2005) Tunnel detection along the southwest U.S. border. Symposium on the Application of Geophysics to Engineering and Environmental Problems, 430–443.
  21. Loke, M.H. (1999) Electrical imaging surveys for environmental and engineering studies. A practical guide to 2‐D and 3‐D surveys. http://moho.ess.ucla.edu/~pdavis/ESS135_2013/LITERATURE/‐LokeDCREsistivity.pdf [accessed 26 September 2018].
  22. Oldenborger, G.A., Routh, P.S. and Knoll, M.D. (2005) Sensitivity of electrical resistivity tomography data to electrode position errors. Geophysical Journal International, 163,1–9.
    [Google Scholar]
  23. Orfanos, C. and Apostolopoulos, G. (2011) 2D‐3D resistivity and microgravity measurements for the detection of an ancient tunnel in the Lavrion area, Greece. Near Surface Geophysics, 9, 449–457.
    [Google Scholar]
  24. Piscitelli, S., Rizzo, E., Cristallo, F., Lapenna, V., Crocco, L., Persico, R. and Soldovieri, F. (2007) GPR and microwave tomography for detecting shallow cavities in the historical area of ”Sassi of Matera” (southern Italy). Near Surface Geophysics, 5 (4), 275–284.
    [Google Scholar]
  25. Scales, J.A. and Snieder, R. (1998) What is noise?Geophysics, 63, 1122–1124.
    [Google Scholar]
  26. Seeßelberg, F. (1926) Der Stellungskrieg 1914 ‐ 1918 auf Grund amtlicher Quellen und unter Mitwirkung namhafter Fachmänner technisch, taktisch und staatswissenschaftlich dargestellt. Berlin: Mittler & Sohn.
    [Google Scholar]
  27. Sihler, (1915) Zeichnung Stollen h. Generalarchiv Karlsruhe, GLA M 202, Bü 28.
  28. Sloan, S. (2015) A current look at geophysical detection of illicit tunnels. The Leading Edge, 34, 154–158.
    [Google Scholar]
  29. Thomas, (1932) Quelques reflexions sur la guerre de mines. Revue du Génie Militaire, 71, 5–34.
    [Google Scholar]
  30. Vesecky, J.F., Nierenberg, W.A. and Despain, A.M. (1980) Tunnel detection. JASON technical report JSR‐79–11.
  31. Willig, D. (2015) Taktik im Minierkrieg. Militärhistorisch‐kriegsgeologischer Reiseführer zum Wytschaete‐Boden (Messines Ridge) bei Ypern (Belgien). Schriftenreihe Geoinformationsdienst der Bundeswehr No 4, Chapter 5.
  32. Zhou, B. and Dahlin, T. (2003) Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surface Geophysics, 1 (3), 105–117.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12105
Loading
/content/journals/10.1002/nsg.12105
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Archaeogeophysics , Data processing , ERT , Resistivity and Tunnel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error