1887
Volume 18, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

An unexpected surface subsidence in Mexico City on 19 May 2015 prompted a detailed geophysical investigation of the three‐dimensional structure of a collapsed‐soil mine located in a section of the Chapultepec Park in the vicinity of an artificial lake. As revealed from past geological explorations, the subsoil at the site consists of volcano‐sedimentary materials that were quarried in the mid‐20th century; subsequently, during the construction of the park, most of those mines had been only partially rehabilitated, with a potential risk of land subsidence. Near‐surface imaging techniques based on ambient seismic noise as well as microgravimetry, electrical resistivity tomography, shallow seismic refraction methods were evaluated for their applicability to characterize the structure of the collapsed mine. Tomography images computed using ambient‐noise array data characterized the extent of the underground mine showing high‐velocity anomaly, while results from microgravimetry and electrical resistivity tomography analyses indicated the structure through weak contrasts in gravity and resistivity anomalies. Additionally, electrical resistivity tomography results also illustrated the saturated nature of the subsoil. While different methods exhibit different capabilities to constrain such a small spatial feature, the present study highlighted the scope of an integrated approach in confirming the existence of potential voids as well as to estimate soil‐subsidence hazard. In terms of operational convenience and rapid performance, the ambient noise tomography method proved to be a relatively efficient and economical reconnaissance tool for identifying 3D velocity contrasts in an urban environment.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12108
2020-06-09
2020-10-25
Loading full text...

Full text loading...

References

  1. Aki, K. (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute, Tokyo University, 35, 415–457.
  2. Aki, K. (1988) Local site effects on ground motion. Earthquake Engineering and Soil Dynamics. II‐Recent Advances in Ground‐Motion Evaluation, Geotechnical Special Publication No 20, American Society of Civil Engineering, New York, USA, 103–155.
  3. Arfken, G.B., Weber, H.J. and Spector, D. (1999) Mathematical methods for physicists, 4th edition. American Journal of Physicists, 67(2), 165–169.
    [Google Scholar]
  4. Argote, D.L., Tejero‐Andrade, A., Cárdenas‐Soto, M., Cifuentes‐Nava, G., Chávez, R.E., Hernández‐Quintero, E., García‐Serrano, A. and Ortega, V. (2020) Designing the underworld in Teotihuacan: Cave detection beneath the moon pyramid by ERT and ANT surveys. Journal of Archaeological Science, 118, 105141. https://doi.org/10.1016/j.jas.2020.105141.
    [Google Scholar]
  5. Bard, P.‐Y. (1988) Microtremor measurements: a tool for site effect estimation? The effects of surface geology on seismic motion. In: Irikura, K. O., editor, Balkema. Rotterdam, the Netherlands.
  6. Behm, M., Leahy, G.M. and Snieder, R. (2014) Retrieval of local surface wave velocities from traffic noise – an example from the La Barge basin (Wyoming) Geophysical Prospecting, 62(2), 223–243.
    [Google Scholar]
  7. Bell, F.G., Donnelly, L.J., Genske, D.D. and Ojeda, J. (2005) Unusual cases of mining subsidence from Great Britain, Germany and Colombia. Environmental Geology, 47(5), 620–631.
    [Google Scholar]
  8. Bell, F.G., Stacey, T.R. and Genske, D.D. (2000) Mining subsidence and its effect on the environment: some differing examples. Environmental Geology, 40(1–2), 135–152.
    [Google Scholar]
  9. Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M. and Yang, Y. (2007) Processing seismic ambient noise data to obtain reliable broad‐band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260.
    [Google Scholar]
  10. Bishop, I., Styles, P., Emsley, S.J., Ferguson, N.S. (1997) The detection of cavities using the microgravity technique: case histories from mining and karstic environments. Geological Society, London, Engineering Geology Special Publications, 12(1), 153–166. https://doi.org/10.1144/gsl.eng.1997.012.01.13.
    [Google Scholar]
  11. Bonnefoy‐Claudet, S. (2004) Nature du bruit de fond sismique: implications pour les études des effets de site. Thèse de Doctorat, LGIT, Grenoble, France.
  12. Butler, D.K. (1984) Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics, 49(7), 1084–1096.
    [Google Scholar]
  13. Butler, D.K. and Murphy, W.L. (1980) Evaluation of Geophysical Methods for Cavity Detection at the WES Cavity Test Facility (No. WES/TR/GL‐80‐4) Army Engineer Waterways Experiment Station Vicksburg MS Geotechnical Lab.
  14. Campillo, M. and Paul, A. (2003) Long‐Range Correlations in the Diffuse Seismic Coda. Science, 299, 547–549.
    [Google Scholar]
  15. Campillo, M., Roux, P. and Shapiro, N.M. (2011) Seismic Ambient Noise Correlation. In: Gupta, H.K. (Eds.) Encyclopedia of Solid Earth Geophysics, 1230–1236. Dordrecht: Springer.
    [Google Scholar]
  16. Cardarelli, E., Cercato, M., Cerreto, A. and Di Filippo, G. (2010) Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophysical Prospecting, 58, 685–695.
    [Google Scholar]
  17. Cardarelli, E., Fischanger, F. and Piro, S. (2008) Integrated geophysical survey to detect buried structures for archaeological prospecting. A case-history at Sabine Necropolis (Rome, Italy). Near Surface Geophysics, 6, 15–20. https://doi.org/10.3997/1873-0604.2007027.
    [Google Scholar]
  18. Cárdenas‐Soto, M., Ramos‐Saldaña, H. and Vidal‐García, C.M. (2016) Interferometría de ruido sísmico para la caracterización de la estructura de velocidad 3D de un talud en la 3a Sección del Bosque de Chapultepec, Ciudad de México. Boletín de la Sociedad Geológica Mexicana, 68(2), 173–186.
    [Google Scholar]
  19. Chávez, R.E., Tejero‐Andrade, A., Cifuentes, G., Argote‐Espino, D.L. and Hernández‐Quintero, E. (2018) Karst detection beneath the pyramid of El Castillo, Chichen Itza, Mexico, by non‐invasive ERT‐3D methods. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-33888-9.
    [Google Scholar]
  20. Chavez‐Garcia, F.J., Rodríguez, M. and Stephenson, W.R. (2006) Subsoil structure using SPAC measurements along a line. Bulletin of the Seismological Society of America, 96(2), 729–736.
    [Google Scholar]
  21. Cooper, G.R.J. and Cowan, D.R. (2006) Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32(10), 1585–1591.
    [Google Scholar]
  22. Curtis, A., Gerstoft, P., Sato, H., Snieder, R. and Wapenaar, K. (2006) Seismic interferometry—turning noise into signal. Leading Edge, 25(9), 1082–1092.
    [Google Scholar]
  23. Derode, A., Larose, E., Tanter, M., de Rosny, J., Tourin, A., Campillo, M. and Fink, M. (2003) Recovering the Green's function from field‐field correlations in an open scattering medium. Journal of the Acoustical Society of America, 113(6), 2973–2976.
    [Google Scholar]
  24. Draganov, D.S., Wapenaar, K., Mulder, W., Singer, J. and Verdel, A. (2007) Retrieval of reflections from seismic background‐noise measurements. Geophysics Research Letter, 34(4), 2–5.
    [Google Scholar]
  25. Essa, K.S. and Munschy, M. (2019) Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128(5), 123.
    [Google Scholar]
  26. Fang, H., Lei, J., Zhang, J., An, J. and Wang, F. (2019) Modelling ground‐penetrating radar wave propagation using graphics processor unit parallel implementation of the symplectic Euler method. Near Surface Geophysics, 17(4), 417–425.
    [Google Scholar]
  27. Gouédard, P., Cornou, C. and Roux, P. (2008) Phase‐velocity dispersion curves and small‐scale geophysics using noise correlation slantstack technique. Geophysics Journal International, 172(3), 971–981.
    [Google Scholar]
  28. Gouédard, P., Yao, H., Ernst, F. and van der Hilst, R.D. (2012) Surface wave eikonal tomography in heterogeneous media using exploration data. Geophysical Journal International, 191(2), 781–788.
    [Google Scholar]
  29. Haeni, F.P. (1986) Application of seismic refraction methods in groundwater modeling studies in New England. Geophysics, 51(2), 236–249.
    [Google Scholar]
  30. Helffrich, G., Wookey, J. and Bastow, I. (2013) The Seismic Analysis Code: A Primer and User's Guide, 1st edition. United Kingdom: Cambridge University Press.
    [Google Scholar]
  31. Herrmann, R.B. (2013) Computer programs in seismology: an evolving tool for instruction and research. Seismological Research Letter, 84(6), 1081–1088.
    [Google Scholar]
  32. Higuera‐Díaz, I., Carpenter, P. and Thompson, M. (2007) Identification of buried sinkholes using refraction tomography at Ft. Campbell Army Airfield, Kentucky. Environmental Geology, 53, 805–812
    [Google Scholar]
  33. Kotyrba, B. and Schmidt, V. (2014) Combination of seismic and resistivity tomography for the detection of abandoned mine workings in Münster/Westfalen, Germany: improved data interpretation by cluster analysis. Near Surface Geophysics, 12(3), 415–426.
    [Google Scholar]
  34. Lamich, D., Marschalko, M., Yilmaz, I., Bednářová, P., Niemiec, D., Durďák, J., Kubečka, K. and Duda, R. (2016) Utilization of engineering geology in geo‐tourism: few case studies of subsidence influence on historical churches in Ostrava‐Karvina District (Czech Republic). Environmental Earth Sciences, 75(2), 128.
    [Google Scholar]
  35. Larose, E., Margerin, L., Derode, A., Tiggelen, B.V., Campillo, M., Shapiro, N., Paul, A., Stehly, L. and Tanter, M. (2006) Correlation of random wave fields: an interdisciplinary review. Geophysics, 71(4), Sl11–Sl21.
    [Google Scholar]
  36. Li, L., Huang, D., Han, L. and Ma, G. (2014) Optimised edge detection filters in the interpretation of potential field data. Exploration Geophysics, 45(3), 171–176.
    [Google Scholar]
  37. Loke, M.H. and Barker, R.D. (1996) Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method. Geophysical Prospecting, 44, 131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x.
    [Google Scholar]
  38. Louie, J.N. (2001) Faster, better: shear‐wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America, 91(2), 347–364.
    [Google Scholar]
  39. Marschalko, M., Yilmaz, I., Bednárik, M., Kubečka, K., Bouchal, T. and Závada, J. (2012) Subsidence map of underground mining influence for urban planning: an example from the Czech Republic. Quarterly Journal of Engineering Geology and Hydrogeology, 45(2), 231–241.
    [Google Scholar]
  40. Marschalko, M., Yilmaz, I., Lamich, D., Drusa, M., Kubečková, D., Peňaz, T., Burkotová, T., Slivka, V., Bednárik, M., Krčmář, D. and Duraj, M. (2014) Unique documentation, analysis of origin and development of an undrained depression in a subsidence basin caused by underground coal mining (Kozinec, Czech Republic). Environmental Earth Sciences, 72(1), 11–20.
    [Google Scholar]
  41. McCann, D.M., Jackson, P.D. and Culshaw, M.G. (1987) The use of geophysical surveying methods in the detection of natural cavities and mineshafts. Quarterly Journal of Engineering Geology and Hydrogeology, 20(1), 59–73.
    [Google Scholar]
  42. McDonald, R. and Davies, R. (2003) Detection of sinkholes using 2D electrical resistivity imaging. First Break, 21, 32–35.
    [Google Scholar]
  43. Miller, H.G. and Singh, V. (1994) Potential field tilt‐a new concept for location of potential field sources. Journal of Applied Geophysics, 32(2–3), 213–217.
    [Google Scholar]
  44. Mochales, T., Casas, A.M., Pueyo, E.L., Pueyo, O., Román, M.T., Pocoví, A., Soriano, M.A. and Ansón, D. (2008) Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain. Environmental Geology, 53(5), 1067–1077.
    [Google Scholar]
  45. Montesinos, F.G., Arnoso, J. and Vieira, R. (2005) Using a genetic algorithm for 3‐D inversion of gravity data in Fuerteventura (Canary Islands). International Journal of Earth Sciences, 94(2), 301–316.
    [Google Scholar]
  46. Mooser, F., Tamez, E., Santoyo, E., Holguín, E. and Gutiérrez, C.E. (1986) Características geológicas y geotécnicas del valle de México, D.F. Technical report, Depto. Distrito Federal, Comisión de Vialidad y Transporte Urbano, Mexico (In Spanish).
  47. Nakata, N., Snieder, R., Tsuji, T., Larner, K. and Matsuoka, T. (2011) Shear wave imaging from traffic noise using seismic interferometry by cross‐coherence. Geophysics, 76(6), SA97–SA106.
    [Google Scholar]
  48. Nava‐Flores, M., Ortiz‐Aleman, C., Orozco‐Del‐Castillo, M.G., Urrutia‐Fucugauchi, J., Rodriguez‐Castellanos, A., Couder‐Castañeda, C. and Trujillo‐Alcantara, A. (2016) 3D gravity modeling of complex salt features in the southern Gulf of Mexico. International Journal of Geophysics, 2016. https://doi.org/10.1155/2016/1702164.
    [Google Scholar]
  49. Nagihara, S. and Hall, S.A. (2001) Three‐dimensional gravity inversion using simulated annealing: constraints on the diapiric roots of allochthonous salt structures. Geophysics, 66(5), 1438–1449.
    [Google Scholar]
  50. Nichol, D. (2000) Geo‐engineering of mining subsidence affecting the highway network at Holywell, North Wales. Mining Technology, 109(3), 165–171.
    [Google Scholar]
  51. Nolet, G. (2008) A breviary of seismic tomography: imaging the interior of the earth and the sun. Cambridge University Press, pp. 244.
  52. Okada, H. (2006) Theory of efficient array observations of microtremors with special reference to the SPAC method. Exploration Geophysics, 37(1), 73–85. https://doi.org/10.1190/1.9781560801740.
    [Google Scholar]
  53. Okada, H. and Suto, K. (2003) The Microtremor Survey Method, Vol 12. Society of Exploration Geophysicists.
    [Google Scholar]
  54. Oruç, B. (2011) Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı‐Central Anatolia Region, Turkey. Pure and Applied Geophysics, 168(10), 1769–1780.
    [Google Scholar]
  55. Oruç, B. and Keskinsezer, A. (2008) Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure and Applied Geophysics, 165, 1913–1927.
    [Google Scholar]
  56. Pallero, J.L.G., Fernández‐Martínez, J.L., Bonvalot, S. and Fudym, O. (2017) 3D gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. Journal of Applied Geophysics, 139, 338–350.
    [Google Scholar]
  57. Picozzi, M., Parolai, S., Bindi, D. and Strollo, A. (2009) Characterization of shallow geology by high‐frequency seismic noise tomography. Geophysics Journal International, 176(1), 164–174.
    [Google Scholar]
  58. Pilz, M., Parolai, S., Picozzi, M. and Bindi, D. (2012) Three‐dimensional shear wave velocity imaging by ambient seismic noise tomography. Geophysical Journal International, 189(1), 501–512.
    [Google Scholar]
  59. Renalier, F., Jongmans, D., Campillo, M. and Bard, P.‐Y. (2010) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. Journal of Geophysical Research: Earth Surface, 115(F3). https://doi.org/10.1029/2009JF001538.
    [Google Scholar]
  60. Reyes‐Pimentel, T.A., Cárdenas‐Soto, M. and Alcántara‐Alanís, A. (2009) Microsismicidad en el poniente de la ciudad de México. Análisis de una secuencia de eventos locales producidos por fallamiento. In Memorias del XVII Congreso Nacional de Ingeniería Sísmica, 11–14 noviembre, Puebla, Puebla. Sociedad Mexicana de Ingeniería Sísmica (In Spanish).
  61. Roux, P., Sabra, K.G., Kuperman, W.A. and Roux, A. (2005) Ambient noise cross correlation in free space: theoretical approach. Journal of the Acoustical Society of America, 117, 79–84.
    [Google Scholar]
  62. Sabra, K.G., Gerstoft, P., Roux, P. and Kuperman, W.A. (2005) Extracting time‐domain Green's function from ambient seismic noise. Geophysical Research Letters, 32, L03310.
    [Google Scholar]
  63. Santoyo, M.A. (1996) Estudios del subsuelo en el Valle de México, Cuadernos de Investigación. N° 34. CENAPRED, Sistema Nacional de Protección Civil. Centro Nacional de Prevención de Desastres (CENAPRED), México, D.F.; México 91p. (in Spanish).
  64. Sasaki, Y. (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, 40, 453–464. https://doi.org/10.1111/j.1365-2478.1992.tb00536.x.
    [Google Scholar]
  65. Shapiro, N.M. and Campillo, M. (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letter, 31(7), 1–4.
    [Google Scholar]
  66. Shapiro, N.M., Campillo, M., Stehly, L. and Ritzwoller, M.H. (2005) High‐resolution surface‐wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618.
    [Google Scholar]
  67. Sharafeldin, S.M., Essa, K.S., Youssef, M.A., Karsli, H., Diab, Z.E. and Sayil, N. (2019) Shallow geophysical techniques to investigate the groundwater table at the Great Pyramids of Giza, Egypt. Geoscientific Instrumentation, Methods and Data Systems, 8(1), 29–43.
    [Google Scholar]
  68. Sheehan, J.R., Doll, W.E. and Mandell, W.A. (2005) An evaluation of methods and available software for seismic refraction tomography analysis. Journal of Environmental and Engineering Geophysics, 10(1), 21–34.
    [Google Scholar]
  69. Shen, Y., Ren, Y., Gao, H. and Savage, B. (2012) An improved method to extract very‐broadband empirical Green's functions from ambient seismic noise. Bulletin of the Seismological Society of America, 102(4), 1872–1877.
    [Google Scholar]
  70. Snieder, R. (2004) Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. Physical Review E, 69(4), 046610.
    [Google Scholar]
  71. Snieder, R. and Larose, E. (2013) Extracting Earth's elastic wave response from noise measurements. Annual Review of Earth and Planetary Sciences, 41(1), 183–206.
    [Google Scholar]
  72. Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I. and Wapenaar, K. (2009) A comparison of strategies for seismic interferometry. Surveys in Geophysics, 30(4–5), 503–523.
    [Google Scholar]
  73. Socco, L.V., Foti, S. and Boiero, D. (2010) Surface‐wave analysis for building near‐surface velocity models—established approaches and new perspectives. Geophysics, 75(5), 75A83–75A102.
    [Google Scholar]
  74. Taillandier, C., Noble, M., Chauris, H. and Calandra, H. (2009) First‐arrival traveltime tomography based on the adjoint‐state method. Geophysics, 74(6), WCB1.
    [Google Scholar]
  75. Tejero, A., Chávez, R.E., Urbieta, J. and Flores‐Márquez, E.L. (2002) Cavity detection in the Southwestern Hilly Portion of Mexico City by resistivity imaging. Journal of Environmental & Engineering Geophysics, 7(3), 130–139. https://doi.org/10.4133/JEEG7.3.130.
    [Google Scholar]
  76. Tejero‐Andrade, A., Cifuentes, G., Chávez, R.E., López‐González, A.E. and Delgado‐Solórzano, C. (2015) L and CORNER‐arrays for 3D electric resistivity tomography: an alternative for geophysical surveys in urban zones. Near Surface Geophysics, 13(4), 355–368. https://doi.org/10.3997/1873-0604.2015015.
    [Google Scholar]
  77. Trogu, A., Ranieri, G. and Fischanger, F. (2011) 3D electrical resistivity tomography to improve the knowledge of the subsoil below existing buildings. Environmental Semeiotics, 4(4). https://doi.org/10.3383/es.4.4.2.
    [Google Scholar]
  78. Uieda, L., Oliveira Jr, V.C. and Barbosa, V.C. (2013) Modeling the Earth with Fatiando a Terra. In Proceedings of the 12th Python in Science Conference, 90–96. https://doi.org/10.25080/Majora-8b375195-010.
  79. Verduzco, B., Fairhead, J.D., Green, C.M. and MacKenzie, C. (2004) New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116–119.
    [Google Scholar]
  80. Wang, Z., Li, X., Zhao, D., Shang, X. and Dong, L. (2018) Time‐lapse seismic tomography of an underground mining zone. International Journal of Rock Mechanics and Mining Sciences, 107, 136–149.
    [Google Scholar]
  81. Wapenaar, K. and Fokkema, J. (2006) Green's function representations for seismic interferometry. Geophysics, 71(4), Sl33–Sl46.
    [Google Scholar]
  82. Wathelet, M., Jongmans, D., Ohrnberger, M. and Bonnefoy‐Claudet, S. (2008) Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. Journal of Seismology, 12(1), 1–19.
    [Google Scholar]
  83. Weaver, R. and Lobkis, O. (2006) Diffuse fields in ultrasonics and seismology. Geophysics, 71(4), S15–S19.
    [Google Scholar]
  84. Wielandt, E. (1993) Propagation and structural interpretation of non‐plane waves. Geophysics Journal International, 113(1), 45–53.
    [Google Scholar]
  85. Zelt, C.A., Haines, S., Powers, M.H., Sheehan, J., Rohdewald, S., Link, C., Hayashi, K., Zhao, D., Zhou, H.W., Burton, B.L., Petersen, U.K., Bonal, N.D. and Doll, W.E. (2013) Blind test of methods for obtaining 2‐D near‐surface seismic velocity models from first‐arrival traveltimes. Journal Environmental and Engineering Geophysics, 18(3), 183–194.
    [Google Scholar]
  86. Zhang, Y., Li, Y.E., Zhang, H. and Ku, T. (2019) Near‐surface site investigation by seismic interferometry using urban traffic noise in Singapore. Geophysics, 84(2), B169–B180.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12108
Loading
/content/journals/10.1002/nsg.12108
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error