1887
Volume 18, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

ABSTRACT

Wind turbines produce mechanical energy that can propagate to the ground and disturb sensitive measurements such as seismic recordings. The aim of the large‐scale experiment Seismic Monitoring And Research of wind Turbine Induced Emissions (SMARTIE1) at a single wind turbine in Pfinztal (SW Germany) is to understand how wind turbines emit seismic signals under different operating conditions and how these seismic signals propagate through the local subsurface. The main objectives of SMARTIE1 are the investigation of wind turbine induced seismic signals, the characteristics of their propagation behaviour, as well as the radiation pattern of a single wind turbine as defined using particle motions. Moreover, we quantify the emission of the wind turbine induced seismic signals with respect to the wind speed. The combination of the wind turbine's emission into the subsurface and the attenuation behaviour of the seismic signals (ground motion velocity) can be used to estimate protection radii around seismic stations to ensure the recording of seismic signals without noticeable influences of the wind turbines. In this study, we detect several discrete wind turbine induced frequency peaks ranging from 1 to 10 Hz. We identify a radiation pattern of the wind turbine, which could give further insights into the interaction between the movement of the wind turbine's nacelle and the generation of the wind turbine induced seismic signals. Using profile measurements with a maximum distance of almost 3 km each, we fit a power‐law decay for power spectral density proportional to . The attenuation factor, , ranges from 0.7 to 1.3 for lower frequencies between 1 and 4 Hz, and increases to = 2.3 for the higher frequency peak around 5.25 Hz. Finally, we present an example of estimation of a protection radius around the seismic station of the Collm Observatorium that is part of the German Regional Seismic Network. The example protection radius around Collm Observatorium regarding this single wind turbine is reached at a minimum distance of 3.7 km.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12109
2020-06-25
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/nsg/18/5/nsg12109.html?itemId=/content/journals/10.1002/nsg.12109&mimeType=html&fmt=ahah

References

  1. Baisch, S., Fritschen, R., Groos, J., Kraft, T., Plenefisch, T., Plenkers, K., Ritter, J. and Wassermann, J. (2012) Empfehlungen zur Überwachung induzierter Seismizität – Positionspapier des FKPE e.V. Mitteilungen Deutsche Geophysikalische Gesellschaft, 3, 17–31.
    [Google Scholar]
  2. Baisch, S. and Vörös, R. (2010) Reservoir induced seismicity: where, when, why and how strong?Proceedings of World Geothermal Congress 2010, 25–29 April, Bali, Indonesia.
  3. Duarte, H., Wardell, N. and Monrigal, O. (2017) Advanced processing for uhr3d shallow marine seismic surveys. Near Surface Geophysics, 15(4), 347–358.
    [Google Scholar]
  4. Flores Estrella, H., Korn, M. and Alberts, K. (2017) Analysis of the influence of wind turbine noise on seismic recordings at two wind parks in Germany. Journal of Geoscience and Environment Protection, 5, 76–91. Available at: https://doi.org/10.4236/gep.2017.55006.
    [Google Scholar]
  5. Friedrich, A., Krüger, F. and Klinge, K. (1998) Ocean‐generated microseismic noise located with the Gräfenberg array. Journal of Seismology, 2(1), 47–64.
    [Google Scholar]
  6. Friedrich, T., Zieger, T., Forbriger, T. and Ritter, J.R.R. (2018) Locating wind farms by seismic interferometry and migration. Journal of Seismology, 22(6), 1469–1483. Available at: https://doi.org/10.1007/s10950-018-9779-0.
    [Google Scholar]
  7. Grund, M., Ritter, J.R. and Gehrig, M. (2016) Ground motion relations while TBM drilling in unconsolidated sediments. Rock Mechanics and Rock Engineering, 49(5), 1773–1787.
    [Google Scholar]
  8. Hensch, M., Dahm, T., Ritter, J., Heimann, S., Schmidt, B., Stange, S. and Lehmann, K. (2019) Deep low‐frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany). Geophysical Journal International, 216, 2025–2036. Available at: https://doi.org/10.1093/gji/ggy532.
    [Google Scholar]
  9. Marcillo, O.E. and Carmichael, J. (2017) The detection of wind‐turbine noise in seismic records. Seismological Research Letters, 211, 319–1327. Available at: https://doi.org/10.1093/gji/ggx370.
    [Google Scholar]
  10. McNamara, D.E. and Buland, R.P. (2004) Ambient noise levels in the continental united states. Bulletin of the Seismological Society of America, 94(4), 1517–1527.
    [Google Scholar]
  11. Monrigal, O., de Jong, I. and Duarte, H. (2017) An ultra‐high‐resolution 3d marine seismic system for detailed site investigation. Near Surface Geophysics, 15(4), 335–345.
    [Google Scholar]
  12. Nagel, S., Zieger, T., Luhmann, B., Knödel, P., Ritter, J. and Ummenhofer, T. (2019) Erschütterungsemissionen von windenergieanlagen. Stahlbau, 88(6), 559–573.
    [Google Scholar]
  13. Nemes, C. and Munteanu, F. (2011) The wind energy system performance overview: capacity factor vs. technical efficiency. International Journal of Mathematical Models and Methods in Applied Sciences, 5(1), 159–166.
    [Google Scholar]
  14. Neuffer, T. and Kremers, S. (2017) How wind turbines affect the performance of seismic monitoring stations and networks. Geophysical Journal International, 211(3), 1319–1327.
    [Google Scholar]
  15. Neuffer, T., Kremers, S. and Fritschen, R. (2019) Characterization of seismic signals induced by the operation of wind turbines in north Rhine‐Westphalia (NRW), Germany. Journal of Seismology, 23(5), 1161–1177.
    [Google Scholar]
  16. Percival, D.B. and Walden, A.T. (1998) Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press.
    [Google Scholar]
  17. Peterson, J. (1993) Observations and modelling of background seismic noise. Albuquerque, NM: U.S. Geological Survey. Open‐file report 93‐322.
    [Google Scholar]
  18. Saccorotti, G., Piccinini, D., Cauchie, L. and Fiori, I. (2011) Seismic noise by wind farms: a case study from the Virgo Gravitational Wave Observatory, Italy. Bulletin of the Seismological Society, 101(2), 558–578. Available at: https://doi.org/10.1785/0120100203.
    [Google Scholar]
  19. Scherbaum, F. (2013) Of Poles and Zeros: Fundamentals of Digital Seismology, Vol. 15. Dordrecht, The Netherlands: Springer Science & Business Media.
    [Google Scholar]
  20. Stammler, K. and Ceranna, L. (2016) Influence of wind turbines on seismic records of the Gräfenberg Array. Seismological Research Letters, 87(5), 1075–1081. Available at: https://doi.org/10.1785/0220160049.
    [Google Scholar]
  21. Styles, P., England, R., Stimpson, I.G., Toon, S.M., Bowers, D. and Hayes, M. (2005) Microseismic and Infrasound Monitoring of Low Frequency Noise and Vibrations from Windfarms: Recommendations on the Siting of Windfarms in the Vicinity of Eskdalemuir. Newcastle, UK: Keele University. Available at: https://www.keele.ac.uk/geophysics/appliedseismology/wind/FinalReport.pdf [Accessed: 13 May 2019].
  22. Thomson, D.J. (1982) Spectrum estimation and harmonic analysis. Proceedings of the IEEE, Vol, 70, pp. 1055–1096. Available at: https://doi.org/10.1109/PROC.1982.12433.
  23. Welch, P. (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics, 15(2), 70–73.
    [Google Scholar]
  24. Windenergie‐Erlass – BayWEE
    Windenergie‐Erlass – BayWEE . (2016) Hinweise zur Planung und Genehmigung von Winderenergieanlagen (WEA). Available at: https://www.stmwi.bayern.de/fileadmin/user_upload/stmwi/Publikationen/2016/Windenergie-Erlass_2016.pdf.
  25. Xi Engineering Cosultants Ltd
    Xi Engineering Cosultants Ltd . (2014) Seismic vibration produced by wind turbines in the Eskdalemuir region. Edinburgh, UK: Xi Engineering Cosultants Ltd. Release 2.0 of Substantial Research Project.
  26. Zieger, T., Lerbs, N., Ritter, J. and Korn, M. (2019) Seismic recordings for SMARTIE1: seismic monitoring and research of wind turbine induced emissions 1. GFZ Data Services. Other/Seismic Network. Available at: https://doi.org/10.14470/K37563128245.
  27. Zieger, T., Nagel, S., Lutzmann, P., Kaufmann, I., Ritter, J., Ummenhofer, T., Knödel, P. and Fischer, P. (2020) Simultaneous identification of wind turbine vibrations by using seismic data, elastic modeling and laser doppler vibrometry. Wind Energy, 23(4), 1145–1153. Available at: https://doi.org/10.1002/we.2479.
    [Google Scholar]
  28. Zieger, T. and Ritter, J. (2018) Influence of wind turbines on seismic stations in the upper rhine graben, SW Germany. Journal of Seismology, 22, 105–122. Available at: https://doi.org/10.1007/s10950-017-9694-9.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12109
Loading
/content/journals/10.1002/nsg.12109
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Attenuation , Seismic and Surface waves
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error