1887
Volume 19 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The warming of rock permafrost affects mechanical stability and hydro‐cryostatic pressures in rock walls. The coincident decrease in slope stability frequently affects infrastructure by creep and subsidence and promotes the generation of rockfalls and rockslides. The increasing hazard posed by warming permafrost rock walls and the growing exposure of infrastructure and individuals create a demand for quantitative monitoring methods. Laboratory‐calibrated electrical resistivity tomography provides a sensitive record for frozen versus unfrozen bedrock, presumably being the most accurate quantitative monitoring technique in permafrost areas where boreholes are not available. The data presented here are obtained at the permafrost‐affected and unstable Steintaelli Ridge at 3100 m a.s.l. and allow the quantification of permafrost changes in the longest electrical resistivity tomography time series in steep bedrock. Five parallel transects across the rock ridge have been measured five times each, between 2006 and 2019, with similar hardware. Field measurements were calibrated using temperature‐resistivity laboratory measurements of water‐saturated rock samples from the site. A 3D time‐lapse inversion scheme is applied in the boundless electrical resistivity tomography (BERT) software for the inversion of the data. To assess the initial data quality, we compare the effect of data filtering and the robustness of final results with three different filters and two time‐lapse models. We quantify the volumetric permafrost distribution in the bedrock and its degradation in the last decades. Our data show mean monthly air temperatures to increase from −3.4°C to −2.6°C between 2005‒2009 and 2015‒2019, respectively, while simultaneously permafrost volume degraded on average from 6790 m3 (±640 m3 rock in phase‐transition range) in 2006 to 3880 m3 (±1000 m3) in 2019. For the first time, we provide a quantitative measure of permafrost degradation in unstable bedrock by using a temperature‐calibrated 4D electrical resistivity tomography. Our approach represents a fundamental benchmark for the evaluation of climate change effects on bedrock permafrost.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12149
2021-04-16
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/nsg/19/2/nsg12149.html?itemId=/content/journals/10.1002/nsg.12149&mimeType=html&fmt=ahah

References

  1. Biskaborn, B.K., Smith, S.L, Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D.A, et al. (2019) Permafrost is warming at a global scale. Nature Communications, 10(1), 264. https://doi.org/10.1038/s41467‐018‐08240‐4.
    [Google Scholar]
  2. Boeckli, L., Brenning, A., Gruber, S. and Noetzli, J. (2012) Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. Cryosphere, 6(4), 807–820. https://doi.org/10.5194/tc‐6‐807‐2012.
    [Google Scholar]
  3. Casty, C., Wanner, H., Luterbacher, J., Esper, J. and Böhm, R. (2005) Temperature and precipitation variability in the European Alps since 1500. International Journal of Climatology, 25(14), 1855–1880. https://doi.org/10.1002/joc.1216.
    [Google Scholar]
  4. Chambers, J.E., Ogilvy, R.D., Kuras, O., Cripps, J.C. and Meldrum, P.I. (2002) 3D electrical imaging of known targets at a controlled environmental test site. Environmental Geology, 41(6), 690–704. https://doi.org/10.1007/s00254‐001‐0452‐4.
    [Google Scholar]
  5. Davies, M.C.R., Hamza, O. and Harris, C. (2001) The effect of rise in mean annual temperature on the stability of rock slopes containing ice‐filled discontinuities. Permafrost and Periglacial Processes, 12(1), 137–144. https://doi.org/10.1002/ppp.378.
    [Google Scholar]
  6. Doetsch, J., Linde, N., Pessognelli, M., Green, A.G. and Günther, T. (2012) Constraining 3‐D electrical resistance tomography with GPR reflection data for improved aquifer characterization. Journal of Applied Geophysics, 78, 68–76. https://doi.org/10.1016/j.jappgeo.2011.04.008.
    [Google Scholar]
  7. Draebing, D. and Eichel, J. (2017) Spatial controls of turf‐banked solifluction lobes and their role for paraglacial adjustment in glacier forelands. Permafrost and Periglacial Processes, 28(2), 446–459. https://doi.org/10.1002/ppp.1930.
    [Google Scholar]
  8. Draebing, D., Haberkorn, A., Krautblatter, M., Kenner, R. and Phillips, M. (2017) Thermal and mechanical responses resulting from spatial and temporal snow cover variability in permafrost rock slopes, Steintaelli, Swiss Alps. Permafrost and Periglacial Processes, 28(1), 140–157. https://doi.org/10.1002/ppp.1921.
    [Google Scholar]
  9. Draebing, D. and Krautblatter, M. (2012) P‐wave velocity changes in freezing hard low‐porosity rocks: a laboratory‐based time‐average model. The Cryosphere, 6(5), 1163–1174. https://doi.org/10.5194/tc‐6‐1163‐2012.
    [Google Scholar]
  10. Draebing, D., Krautblatter, M. and Dikau, R. (2014) Interaction of thermal and mechanical processes in steep permafrost rock walls: a conceptual approach. Geomorphology, 226(November), 226–235. https://doi.org/10.1016/j.geomorph.2014.08.009.
    [Google Scholar]
  11. Draebing, D., Krautblatter, M. and Hoffmann, T. (2017) Thermo‐cryogenic controls of fracture kinematics in permafrost rockwalls, Geophys. Res. Lett., 44(8), 3535–3544, https://doi.org/10.1002/2016GL072050.
    [Google Scholar]
  12. Duvillard, P.A., Revil, A., Qi, Y., Soueid Ahmed, A., Coperey, A. and Ravanel, L. (2018) Three‐dimensional electrical conductivity and induced polarization tomography of a rock glacier. Journal of Geophysical Research: Solid Earth, 123(11), 9528–9554. https://doi.org/10.1029/2018JB015965.
    [Google Scholar]
  13. Emmert, A. and Kneisel, C. (2017) Internal structure of two alpine rock glaciers investigated by quasi‐3‐D electrical resistivity imaging. Cryosphere, 11(2), 841–855. https://doi.org/10.5194/tc‐11‐841‐2017.
    [Google Scholar]
  14. Fischer, L., Amann, F., Moore, J.R. and Huggel, C. (2010) Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland). Engineering Geology, 116(1–2), 32–43. https://doi.org/10.1016/j.enggeo.2010.07.005.
    [Google Scholar]
  15. Gharibi, M. and Bentley, L.R. (2005) Resolution of 3‐D electrical resistivity images from inversions of 2‐D orthogonal lines. Journal of Environmental and Engineering Geophysics, 10(4), 339–349. https://doi.org/10.2113/JEEG10.4.339.
    [Google Scholar]
  16. Gilbert, A. and Vincent, C. (2013) Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures. Geophysical Research Letters, 40(10), 2102–2108. https://doi.org/10.1002/grl.50401.
    [Google Scholar]
  17. Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J. and Stoffel, M. (2014) 21st century climate change in the European Alps – a review. Science of the Total Environment, 493, 1138–1151. https://doi.org/10.1016/j.scitotenv.2013.07.050.
    [Google Scholar]
  18. Gruber, S. and Haeberli, W. (2007) Permafrost in steep bedrock slopes and its temperature‐related destabilization following climate change. Journal of Geophysical Research, 112(F2), F02S18. https://doi.org/10.1029/2006JF000547.
    [Google Scholar]
  19. Gruber, S. and Hoelzle, M. (2001) Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data. Permafrost and Periglacial Processes, 12(1), 69–77. https://doi.org/10.1002/ppp.374.
    [Google Scholar]
  20. Gruber, S., Hoelzle, M. and Haeberli, W. (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31(13), L13504. https://doi.org/10.1029/2004GL020051.
    [Google Scholar]
  21. Günther, T. and Rücker, C. (2019) Manual, Boundless electrical resistivity tomography BERT: The user tutorial.
  22. Günther, T., Rücker, C. and Spitzer, K. (2006) Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion. Geophysical Journal International, 166(2), 506–517. https://doi.org/10.1111/j.1365‐246X.2006.03011.x.
    [Google Scholar]
  23. Harris, C., Mühll, D.V., Isaksen, K., Haeberli, W., Sollid, J.L., King, L., et al. (2003) Warming permafrost in European mountains. Global and Planetary Change, 39(3–4), 215–225. https://doi.org/10.1016/j.gloplacha.2003.04.001.
    [Google Scholar]
  24. Hartmeyer, I., Delleske, R., Keuschnig, M., Krautblatter, M., Lang, A., Otto, J.C.,et al. (2020) Current glacier recession causes significant rockfall increase : The immediate paraglacial response of deglaciating cirque walls. Earth Surf. Dynam, 8(March), 1–25. https://doi.org/10.5194/esurf‐8‐729‐2020.
    [Google Scholar]
  25. Hauck, C. and Mühll, D.V. (2003) Inversion and interpretation of two‐dimensional geoelectrical measurements for detecting permafrost in mountainous regions. Permafrost and Periglacial Processes, 14(4), 305–318. https://doi.org/10.1002/ppp.462.
    [Google Scholar]
  26. Hilbich, C., Hauck, C., Hoelzle, M., Scherler, M., Schudel, L., Völksch, I., et al. (2008) Monitoring mountain permafrost evolution using electrical resistivity tomography: a 7‐year study of seasonal, annual, and long‐term variations at Schilthorn, Swiss Alps. Journal of Geophysical Research, 113(F1), F01S90. https://doi.org/10.1029/2007JF000799.
    [Google Scholar]
  27. Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., et al. (2019) Chapter 2: High mountain areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 131–202.
    [Google Scholar]
  28. Huggel, C. (2009) Recent extreme slope failures in glacial environments: effects of thermal perturbation. Quaternary Science Reviews, 28(11–12), 1119–1130. https://doi.org/10.1016/j.quascirev.2008.06.007.
    [Google Scholar]
  29. IPCC (2014) Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team , R. K.Pachauri, and L. A.Meyer (Eds.). Geneva, Switzerland: IPCC.
    [Google Scholar]
  30. Jouniaux, L., Zamora, M. and Reuschlé, T. (2006) Electrical conductivity evolution of non‐saturated carbonate rocks during deformation up to failure. Geophysical Journal International, 167(2), 1017–1026. https://doi.org/10.1111/j.1365‐246X.2006.03136.x.
    [Google Scholar]
  31. Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H. and Phillips, M. (2019) Distinguishing ice‐rich and ice‐poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps. The Cryosphere, 13(7), 1925–1941. https://doi.org/10.5194/tc‐13‐1925‐2019.
    [Google Scholar]
  32. Kenner, R., Phillips, M., Danioth, C., Denier, C., Thee, P. and Zgraggen, A. (2011) Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss Alps. Cold Regions Science and Technology, 67(3), 157–164. https://doi.org/10.1016/j.coldregions.2011.04.006.
    [Google Scholar]
  33. Keuschnig, M., Krautblatter, M., Hartmeyer, I., Fuss, C. and Schrott, L. (2017) Automated electrical resistivity tomography testing for early warning in unstable permafrost rock walls around alpine infrastructure. Permafrost and Periglacial Processes, 28(1), 158–171. https://doi.org/10.1002/ppp.1916.
    [Google Scholar]
  34. Kneisel, C., Emmert, A. and Kästl, J. (2014) Application of 3D electrical resistivity imaging for mapping frozen ground conditions exemplified by three case studies. Geomorphology, 210, 71–82. https://doi.org/10.1016/j.geomorph.2013.12.022.
    [Google Scholar]
  35. Krautblatter, M. (2009) Detection and quantification of permafrost change in alpine rock walls and implications for rock instability. Ph.D. Thesis. Friedrich‐Wilhelms University Bonn.
    [Google Scholar]
  36. Krautblatter, M. (2010) Patterns of multiannual aggradation of permafrost in rock walls with and without hydraulic interconnectivity (Steintälli, Valley of Zermatt, Swiss Alps). In Otto, J.‐C. and Dikau, R. ((Eds.) Landform – Structure, Evolution, Process Control. Lecture Notes in Earth Sciences, vol 115. Berlin, Heidelberg: Springer, pp. 199–219. https://doi.org/10.1007/978‐3‐540‐75761‐0_13.
    [Google Scholar]
  37. Krautblatter, M. and Draebing, D. (2014) Pseudo 3‐D P wave refraction seismic monitoring of permafrost in steep unstable bedrock. Journal of Geophysical Research: Earth Surface, 119(2), 287–299. https://doi.org/10.1002/2012JF002638.
    [Google Scholar]
  38. Krautblatter, M., Funk, D. and Günzel, F.K. (2013) Why permafrost rocks become unstable: a rock‐ice‐mechanical model in time and space. Earth Surface Processes and Landforms, 38(8), 876–887. https://doi.org/10.1002/esp.3374.
    [Google Scholar]
  39. Krautblatter, M. and Hauck, C. (2007) Electrical resistivity tomography monitoring of permafrost in solid rock walls. Journal of Geophysical Research: Earth Surface, 112(2), 1–14. https://doi.org/10.1029/2006JF000546.
    [Google Scholar]
  40. Krautblatter, M., Verleysdonk, S., Flores‐Orozco, A. and Kemna, A. (2010) Temperature‐calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps). Journal of Geophysical Research: Earth Surface, 115(2), 1–15. https://doi.org/10.1029/2008JF001209.
    [Google Scholar]
  41. Lysdahl, A.K., Bazin, S., Christensen, C., Ahrens, S., Günther, T. and Pfaffhuber, A.A. (2017) Comparison between 2D and 3D ERT inversion for engineering site investigations – a case study from Oslo Harbour. Near Surface Geophysics, 15(2), 201–209. https://doi.org/10.3997/1873‐0604.2016052.
    [Google Scholar]
  42. Magnin, F., Krautblatter, M., Deline, P., Ravanel, L., Malet, E. and Bevington, A. (2015) Determination of warm, sensitive permafrost areas in near‐vertical rockwalls and evaluation of distributed models by electrical resistivity tomography. Journal of Geophysical Research: Earth Surface, 745–762. https://doi.org/10.1002/2014JF003351.Received.
    [Google Scholar]
  43. Mamot, P., Weber, S., Schröder, T. and Krautblatter, M. (2018) A temperature‐ and stress‐controlled failure criterion for ice‐filled permafrost rock joints. The Cryosphere, 12(10), 3333–3353. https://doi.org/10.5194/tc‐12‐3333‐2018.
    [Google Scholar]
  44. Martin, T. and Günther, T. (2013) Complex resistivity tomography (CRT) for fungus detection on standing oak trees. European Journal of Forest Research, 132(5–6), 765–776. https://doi.org/10.1007/s10342‐013‐0711‐4.
    [Google Scholar]
  45. Mellor, M. (1973) Mechanical Properties of Rocks at Low Temperatures, in 2nd Int. Conference on Permafrost. Yakutsk, Russia, 334–344.
  46. Mollaret, C., Hilbich, C., Pellet, C., Flores‐Orozco, A., Delaloye, R. and Hauck, C. (2019) Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere, 13(10), 2557–2578. https://doi.org/10.5194/tc‐13‐2557‐2019.
    [Google Scholar]
  47. Mourey, J., Marcuzzi, M., Ravanel, L. and Pallandre, F. (2019) Effects of climate change on high Alpine mountain environments: evolution of mountaineering routes in the Mont Blanc massif (Western Alps) over half a century. Arctic, Antarctic, and Alpine Research, 51(1), 176–189. https://doi.org/10.1080/15230430.2019.1612216.
    [Google Scholar]
  48. Murton, J.B., Kuras, O., Krautblatter, M., Cane, T., Tschofen, D., Uhlemann, S., et al. (2016) Monitoring rock freezing and thawing by novel geoelectrical and acoustic techniques. Journal of Geophysical Research: Earth Surface, 121(12), 2309–2332. https://doi.org/10.1002/2016JF003948.
    [Google Scholar]
  49. Murton, J.B., Peterson, R. and Ozouf, J.‐C. (2006) Bedrock fracture by ice segregation in cold regions. Science, 314(5802), 1127–1129. https://doi.org/10.1126/science.1132127.
    [Google Scholar]
  50. PERMOS (2019) Permafrost in Switzerland 2014/2015 to 2017/2018, Noetzli, J., Pellet, C. and Staub, B. (Eds.). Glaciological Report Permafrost No. 16–19 of the Cryospheric Commission of the Swiss Academy of Sciences. pp. 104. https://doi.org/10.13093/permos‐rep‐2019‐16‐19.
    [Google Scholar]
  51. Phillips, M., Haberkorn, A., Draebing, D., Krautblatter, M., Rhyner, H. and Kenner, R. (2016) Seasonally intermittent water flow through deep fractures in an Alpine Rock Ridge: Gemsstock, Central Swiss Alps. Cold Regions Science and Technology, 125, 117–127. https://doi.org/10.1016/j.coldregions.2016.02.010.
    [Google Scholar]
  52. Phillips, M., Wolter, A., Lüthi, R., Amann, F., Kenner, R. and Bühler, Y. (2017) Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014. Earth Surface Processes and Landforms, 42(3), 426–438. https://doi.org/10.1002/esp.3992.
    [Google Scholar]
  53. Pirulli, M. (2009) The Thurwieser rock avalanche (Italian Alps): description and dynamic analysis. Engineering Geology, 109(1–2), 80–92. https://doi.org/10.1016/j.enggeo.2008.10.007.
    [Google Scholar]
  54. Pogliotti, P., Guglielmin, M., Cremonese, E., Morra Di Cella, U., Filippa, G., Pellet, C., et al. (2015) Warming permafrost and active layer variability at Cime Bianche, Western European Alps. Cryosphere, 9(2), 647–661. https://doi.org/10.5194/tc‐9‐647‐2015.
    [Google Scholar]
  55. Ravanel, L., Deline, P., Lambiel, C. and Vincent, C. (2013) Instability of a high alpine rock ridge: the Lower Arête Des Cosmiques, Mont Blanc Massif, France. Geografiska Annaler, Series A: Physical Geography, 95(1), 51–66. https://doi.org/10.1111/geoa.12000.
    [Google Scholar]
  56. Ravanel, L. and Deline, P. (2010) Climate influence on rockfalls in high‐Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the “Little Ice Age.” The Holocene, 21(2), 357–365. https://doi.org/10.1177/0959683610374887.
    [Google Scholar]
  57. Ravanel, L., Magnin, F. and Deline, P. (2017) Impacts of the 2003 and 2015 summer heatwaves on permafrost‐affected rock‐walls in the Mont Blanc massif. Science of the Total Environment, 609, 132–143. https://doi.org/10.1016/j.scitotenv.2017.07.055.
    [Google Scholar]
  58. Rödder, T. and Kneisel, C. (2012) Permafrost mapping using quasi‐3D resistivity imaging, Murtèl, Swiss Alps. Near Surface Geophysics, 10(2), 117–127. https://doi.org/10.3997/1873‐0604.2011029.
    [Google Scholar]
  59. Scherrer, S.C., Appenzeller, C., Liniger, M.A. and Schär, C. (2005) European temperature distribution changes in observations and climate change scenarios. Geophysical Research Letters, 32(19), 1–5. https://doi.org/10.1029/2005GL024108.
    [Google Scholar]
  60. Siewert, M.B., Krautblatter, M., Christiansen, H.H. and Eckerstorfer, M. (2012) Arctic rockwall retreat rates estimated using laboratory‐calibrated ERT measurements of talus cones in Longyeardalen, Svalbard. Earth Surface Processes and Landforms, 37(14), 1542–1555. https://doi.org/10.1002/esp.3297.
    [Google Scholar]
  61. Sosio, R., Crosta, G.B. and Hungr, O. (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engineering Geology, 100(1–2), 11–26. https://doi.org/10.1016/j.enggeo.2008.02.012.
    [Google Scholar]
  62. Supper, R., Ottowitz, D., Jochum, B., Römer, A., Pfeiler, S., Kauer, S., et al. (2014) Geoelectrical monitoring of frozen ground and permafrost in alpine areas: field studies and considerations towards an improved measuring technology. Near Surface Geophysics, 12(1), 93–115. https://doi.org/10.3997/1873‐0604.2013057.
    [Google Scholar]
  63. Tso, C.H.M., Kuras, O., Wilkinson, P.B., Uhlemann, S., Chambers, J.E., Meldrum, P.I., et al. (2017) Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. Journal of Applied Geophysics, 146, 103–119. https://doi.org/10.1016/j.jappgeo.2017.09.009.
    [Google Scholar]
  64. Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., Preux, A.D., et al. (2020) Direct observations of a three million cubic meter rock‐slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology, 351, 106933. https://doi.org/10.1016/j.geomorph.2019.106933.
    [Google Scholar]
  65. Wanner, H., Salvisberg, E., Rickli, R. and Schüepp, M. (1998) 50 years of alpine weather statistics (AWS). Meteorologische Zeitschrift, 7(3), 99–111. https://doi.org/10.1127/metz/7/1998/99.
    [Google Scholar]
  66. Zisser, N., Nover, G., Dürrast, H. and Siegesmund, S. (2007) Relationship between electrical and hydraulic properties of sedimentary rocks. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 158(4), 883–894. https://doi.org/10.1127/1860‐1804/2007/0158‐0883.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12149
Loading
/content/journals/10.1002/nsg.12149
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 3D; Climate change; ERT; Geohazard

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error