1887
Volume 19 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

On El Hierro (Canary Islands, Spain), the company Gorona del Viento El Hierro S.A. carried out the construction of a Wind‐Pumped Hydro Power Station in order to achieve the energy autonomy on the island through 100% renewable energy. The station consists of two man‐made water reservoirs, whose design was adapted to the island topography and emplaced in a valley and an inactive crater. In order to study the subsurface of both reservoirs, the characteristic heterogeneity of volcanic materials was taken into account. Therefore, a research campaign combining different methods was proposed; mechanical investigations traditionally applied in engineering (rotary boreholes, dynamic probing super heavy tests and pits) and geophysical methods (seismic refraction tomography and electrical resistivity tomography) were both utilized. The aims were to determine the geological structure of each site, detect possible anomalies or structures (i.e., faults, volcanic cavities, etc.), identify the different lithologies, determine the soil thickness and depth to bedrock, predict the excavatability of the materials, and obtain data about the physical properties and mechanical behaviour of the ground in an effort to carry out a geotechnical site characterization of both sites. At the site of the upper reservoir, electrical resistivity tomography recorded a high thickness of low resistivity soils, which were subsequently investigated by deep boreholes in order to sample and test them properly, since they could generate high settlements during the construction of the reservoir. At the site of the lower reservoir, the existing palaeorelief in the basaltic bedrock was detected by seismic refraction tomography, which allowed for the selection of the appropriate excavation machinery for the planned earthworks. The geological interpretation of the P‐wave velocity models and electrical resistivity models are shown in this paper, as well as a correlation between geotechnical parameters and geophysical properties of volcanic materials and recent deposits, which will be useful for other civil projects which may be carried out in the future at sites with similar geological conditions.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12152
2021-04-16
2024-03-28
Loading full text...

Full text loading...

References

  1. Abidin, M.H.Z., Saad, R., Ahmad, F., Wijeyesekera, D.C. and Baharuddin, F.T. (2011) Application of geophysical methods in civil engineering. Malaysian Technical Universities International Conference on Engineering & Technology (MUiCET).
  2. Adelinet, M., Dominguez, C., Fortin, J. and Violette, S. (2018) Seismic‐refraction field experiments on Galapagos Islands: a quantitative tool for hydrogeology. Journal of Applied Geophysics, 148, 139–151, https://doi.org/10.1016/j.jappgeo.2017.10.009. hal‐01847671.
    [Google Scholar]
  3. Álvarez Manilla, A.A. (2013) Geofísica aplicada en los proyectos básicos de ingeniería civil. Secretaría de Comunicaciones y Transportes Instituto Mexicano del Transporte. Publicación Técnica No. 229.
  4. AASHTO T194 (1997) Method of test for determination of organic matter in soils by wet combustion. American Association of State Highway and Transportation Officials.
  5. ASTM D1883 (2007) Standard test method for California bearing ratio (CBR) of laboratory‐compacted soils. ASTM International, West Conshohocken, PA, www.astm.org
  6. ASTM C88 (2005) Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. ASTM International, West Conshohocken, PA, www.astm.org
  7. ASTM C1271 (2006) Standard test method for X‐ray spectrometric analysis of lime and limestone. ASTM International, West Conshohocken, PA, www.astm.org
  8. ASTM D854 (2006) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, www.astm.org
    [Google Scholar]
  9. ASTM D1557 (2007) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft‐lbf/ft3 (2,700 kN‐m/m3)). ASTM International, West Conshohocken, PA, www.astm.org
  10. ASTM D1586 (2008) Standard test method for standard penetration test (SPT) and split‐barrel sampling of soils. ASTM International, West Conshohocken, PA, www.astm.org
  11. ASTM D2116 (2006) Standard test method for unconfined compressive strength of cohesive soils. ASTM International, West Conshohocken, PA, www.astm.org
  12. ASTM D2216 (2005) Standard test method for laboratory determination of water content of soil and rock by mass. ASTM International, West Conshohocken, PA, www.astm.org
  13. ASTM D2419 (2002) Standard test method for sand equivalent value of soils and fine aggregate. ASTM International, West Conshohocken, PA, www.astm.org
  14. ASTM D2435 (2004) Standard test methods for one‐dimensional consolidation properties of soils using incremental loading. ASTM International, West Conshohocken, PA, www.astm.org
  15. ASTM D2938 (1995) Standard test method for unconfined compressive strength of intack rock core specimens. ASTM International, West Conshohocken, PA, www.astm.org
  16. ASTM D3080 (2004) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken, PA, www.astm.org
  17. ASTM D4318 (2005) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, PA, www.astm.org
  18. ASTM D4373 (2002) Standard test method for rapid determination of carbonate content of soils. ASTM International, West Conshohocken, PA, www.astm.org
  19. ASTM D4719 (2007) Standard test method for prebored pressuremeter testing in soils. ASTM International, West Conshohocken, PA, www.astm.org
  20. ASTM D4767 (2004) Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken, PA, www.astm.org
  21. ASTM D5333 (2003) Standard test method for measurement of collapse potential of soils. ASTM International, West Conshohocken, PA, www.astm.org
  22. ASTM D6913 (2007) Standard test methods for particle‐size analysis of soils. ASTM International, West Conshohocken, PA, www.astm.org
  23. ASTM D7263 (2009) Standard test methods for laboratory determination of density (unit weight) of soil specimens. ASTM International, West Conshohocken, PA, www.astm.org
  24. Azwin, I.N., Rosli, S. and Nordiana, M.M. (2013) Applying the seismic refraction tomography for site characterization. APCBEE Procedia, 5, 227–231.
    [Google Scholar]
  25. Balcells, R. and Gómez, J.A. (1997a) Memorias y mapas geológicos del Plan MAGNA, 1:25.000. El Hierro, Hoja de Valverde, Instituto Geológico y Minero de España, España.
  26. Balcells, R. and Gómez, J.A. (1997b) Memorias y mapas geológicos del Plan MAGNA. 1:25.000. El Hierro, Hoja de Frontera, Instituto Geológico y Minero de España, España.
  27. Balcells, R. and Gómez, J.A. (1997c) Memorias y mapas geológicos del Plan MAGNA. 1:25.000. El Hierro, Hoja de Sabinosa, Instituto Geológico y Minero de España, España.
  28. Balcells, R. and Gómez, J.A. (1997d) Memorias y mapas geológicos del Plan MAGNA. 1:25.000. El Hierro, Hoja de La Restinga, Instituto Geológico y Minero de España, España.
  29. Barker, R.D. (1997) Electrical imaging and it application in engineering investigations. Geological Society, London, Engineering Geology Special Publications, 12, 37–43. https://doi.org/10.1144/GSL.ENG.1997.012.01.02.
  30. Bery, A.A. (2013) High resolution in seismic refraction tomography for environmental study. International Journal of Geosciences, 3(04), 792–796.
    [Google Scholar]
  31. Carracedo, J.C., Badiola, E.R., Guillou, H., De La Nuez, J. and Pérez Torrado, F.J. (2001) Geology and volcanology of La Palma and El Hierro, Western Canaries. Estudios Geológicos, 57, 175–273. https://doi.org/10.3989/egeol.01575‐6134.
    [Google Scholar]
  32. Caterpillar, I.N.C. (2000) Handbook of Ripping, twelfth edition. Peoria, IL: Caterpillar INC. 30 pp.
    [Google Scholar]
  33. Clayton, C.R.I., Matthews, M.C. and Simons, N.E. (1995) Site Investigation, 2nd edition.Blackwell Science Ltd. 592 pp.
    [Google Scholar]
  34. De Groot‐Hedlin, C. and Constable, S. (1990): Occam´s inversion to generate smooth, two‐dimensional models from magnetotelluric data. Geophysics, 55, 1613–1624.
    [Google Scholar]
  35. Estaire, J., Díez, J.A. and Martínez, J.M. (2008) Análisis de las causas de los asentamientos producidos en la balsa de Barlovento (Isla de La Palma, Canarias). 2° Cong. Int. sobre Proyecto, Construcción e Impermeabilización de Balsas. Palma de Mallorca, España.
  36. Fernández‐Baniela, F., Arias, D. and Rubio‐Ordóñez, A. (2018) Causes of ground settlements in upper reservoir of Hydro‐wind Plant of El Hierro and method implemented for soil improvement. Proceedings of 2nd International Research Conference on Sustainable Energy, Engineering, Materials and Environment (IRCSEEME,. 2018, 2(23), 1468. https://doi.org/10.3390/proceedings2231468.
  37. Gardner, G.H.F., Gardner, L.W. and Gregory, A.R. (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780.
    [Google Scholar]
  38. Godio, A., Strobbia, C. and Bacco, G.D. (2006) Geophysical characterization of a rockslide in an Alpine region. Engineering Geology, 83, 273–286.
    [Google Scholar]
  39. Gómez‐Ortiz, D., Martín‐Velázquez, S., Martín‐Crespo, T., Márquez, A., Lillo, J., López, I., et al. (2007) Joint application of ground penetrating radar and electrical resistivity imaging to investigate volcanic materials and structures in Tenerife (Canary Islands, Spain). Journal of Applied Geophysics, 62(3), 287–300. https://doi.org/10.1016/j.jappgeo.2007.01.002.
    [Google Scholar]
  40. González de Vallejo, L.I., Ferrer, M., Ortuño, L. and Oteo, C. (2002) Ingeniería Geológica. Madrid: Pearson Educación. 744 p.
    [Google Scholar]
  41. Guillou, H., Carracedo, J.C., Torrado, F.P. and Badiola, E.R. (1996) K‐Ar ages and magnetic stratigraphy of a hotspot‐induced, fast grown oceanic island: El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research, 73, 141–155. https://doi.org/10.1016/0377‐0273(96)00021‐2.
    [Google Scholar]
  42. Hausen, H. (1964) Rasgos geologicos generales de la isla del hierro. Anuario de Estudios Atlánticos, 10, 547–593.
    [Google Scholar]
  43. Hunt, R.E. (1986) Geotechnical Engineering Techniques and Practices. New York: McGraw‐Hill. 729 pp.
    [Google Scholar]
  44. Himi, M. (2016) Electrical resistivity tomography characterization of La Calderilla volcanic caldera (Gran Canaria island, Spain). https://doi.org/10.13140/RG.2.1.3111.0164.
  45. IGME (2010a) Mapa Geológico de España, Escala 1:25.000. Isla de El Hierro. Hoja 1105‐II, Valverde, 96 pp.
  46. Kearey, P., Brooks, M. and Hill, I. (2002) An Introduction to Geophysical Exploration, Third edition. Blackwell Science.
    [Google Scholar]
  47. Loke, M.H. (2004) Tutorial: 2‐D and 3‐D Electrical Imaging Surveys. Geotomo Software, RES2DINV 3.5 Software.
  48. Look, B.G. (2007) Handbook of Geotechnical Investigation and Design Tables. London, UK: Taylor & Francis Group.
    [Google Scholar]
  49. Mattice, M.D. (1981) Geothermal and ground water exploration on Maui, Hawaii, by applying D.C. electrical soundings. M.Sc. Thesis, University of Hawaii, Manoa, Hawaii.
  50. McCann, D.M. and Fenning, P.J. (1995) Estimation of rippability and excavation conditions from seismic velocity measurements. Engineering Geology Special Publications, 10, 335–343.Geological Society London. https://doi.org/10.1144/GSL.ENG.1995.010.01.29.
    [Google Scholar]
  51. Nawawi, M.N., Baddrul, H.M.T. and Rosli, S. (2010) Application of geophysical methods in civil engineering: Mapping bedrocks and subsurface boulders. Seminar Geofizik Kejuruteraan dan Sekitaran.
    [Google Scholar]
  52. NLT‐114 (1999) Determinación del contenido en sales solubles de los suelos. Normas de Laboratorio de Transporte.
  53. Nordiana, M.M., Rosli, S., Nawawi, M.N.M., Azwin, I.N. and Mohamad, E.T. (2013) Case study, shallow subsurface geology mapping using 2‐D resistivity imaging with EHR technique. APCBEE Procedia, 5, 134–140.
    [Google Scholar]
  54. Obi, J.C. (2012) The use of electrical resistivity tomography (ERT) to delineate water‐filled vugs near a bridge foundation. Masters Thesis. https://scholarsmine.mst.edu/masters_theses/5146.
  55. Olona, J., Pulgar, J.A., Fernández‐Viejo, G., López‐Fernández, C. and González‐Cortina, J.M. (2010) Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods. Near Surface Geophysics, 8, 585–599.
    [Google Scholar]
  56. Pérez‐Torrado, F.J., Carracedo, J.C., Rodíguez‐González, A., Soler, T., V.R. and WiesmaierS. (2012) La erupción submarina de La Restinga en la isla de El Hierro, Canarias: Octubre 2011‐Marzo 2012. Estudios Geológicos; 68(1), 5–27.
  57. Perucho, A. (2017) Comportamiento mecánico de las rocas volcánicas. Boletín de la Sociedad Española de Mecánica del Suelo e Ingeniería Geotécnica, 189, 5–29.
  58. Robinson, E.S. and Coruh, C. (1988) Basic Exploration Geophysics. New York: Wiley.562 pp.
    [Google Scholar]
  59. Stroud, M.A. (1989) The standard penetration test – its application and interpretation. Proceedings of the Geotechnology Conference on Penetration Testing in the UK, Thomas Telford.
  60. Terzaghi, K. and Peck, R.B. (1967) Soil Mechanics in Engineering Practice. New York: Wiley. p 86.
    [Google Scholar]
  61. Thill, R.E., Willard, R.J. and Bur, T.R. (1969) Correlation of longitudinal velocity variation with rock fabric. Journal of Geophysical Research, 74(20).
    [Google Scholar]
  62. UNE‐EN ISO 22476‐2 (2008) Geotechnical investigation and testing. Field testing. Part 2: Dynamic probing (ISO 22476‐2:2005).
  63. UNE 103‐600 (1996) Determinación de la expansividad de un suelo en el aparato Lambe. Una Norma Española.
  64. Watkins, J.S., Walters, L.A. and Godson, R.H. (1972) Dependence of in‐situ compressional‐wave velocity on porosity in unsaturated rocks. Geophysics, 37(1), 25–35.
    [Google Scholar]
  65. Zhang, J. and Toksöz, M.N. (1998) Nonlinear refraction travel time tomography. Geophysics, 63, 1726–1737.
    [Google Scholar]
  66. Zohra‐Hadjadj, F., Laredj, N., Maliki, M., Missoum, H. and Bendani, K. (2019) Laboratory evaluation of soil geotechnical properties via electrical conductivity. Revista Facultad de Ingeniería, Universidad de Antioquia, 90, 101–112.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12152
Loading
/content/journals/10.1002/nsg.12152
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error