1887
Volume 19, Issue 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

ABSTRACT

In the last decade, time‐domain crosshole ground‐penetrating radar full‐waveform inversion has been applied to several different test sites and has improved the resolution and reconstruction of subsurface properties. The full‐waveform inversion requires several diligent executed pre‐processing steps to guarantee a successful inversion and to minimize the risk of being trapped in a local minimum. Thereby, one important aspect is the starting models of the full‐waveform inversion. Generally, adequate starting models need to fulfil the half‐wavelength criterion, which means that the modelled data based on the starting models need to be within half of the wavelength of the measured data in the entire investigation area. Ray‐based approaches can provide such starting models, but in the presence of high contrast layers, such results do not always fulfil this criterion and need to be improved and updated. Therefore, precise and detailed data processing and a good understanding of experimental ground‐penetrating radar data are necessary to avoid erroneous full‐waveform inversion results. Here, we introduce a new approach, which improves the starting model problem and is able to enhance the reconstruction of the subsurface medium properties. The new approach tames the non‐linearity issue caused by high contrast complex media, by applying bandpass filters with different passband ranges during the inversion to the modelled and measured ground‐penetrating radar data. Thereby, these bandpass filters are considered for a certain number of iterations and are progressively expanded to the selected maximum frequency bandwidth. The resulting permittivity full‐waveform inversion model is applied to update the effective source wavelet and is used as an updated starting model in the full‐waveform inversion with the full bandwidth data. This full‐waveform inversion is able to enhance the reconstruction of the permittivity and electrical conductivity results in contrast to the standard full‐waveform inversion results. The new approach has been applied and tested on two synthetic case studies and an experimental data set. The field data were additionally compared with cone penetration test data for validation.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12154
2021-07-16
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/nsg/19/4/nsg12154.html?itemId=/content/journals/10.1002/nsg.12154&mimeType=html&fmt=ahah

References

  1. Backus, G. and Gilbert, F. (1968) The resolving power of gross earth data. Geophysical Journal International, 16(2), 169–205. https://doi.org/10.1111/j.1365‐246X.1968.tb00216.x.
    [Google Scholar]
  2. Becker, M.W. (2006) Potential for satellite remote sensing of ground water. Groundwater, 44(2), 306–318. https://doi.org/10.1111/j.1745‐6584.2005.00123.x.
    [Google Scholar]
  3. Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K. and Slater, L.D. (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 51(6), 3837–3866. https://doi.org/10.1002/2015WR017016.
    [Google Scholar]
  4. Bleistein, N. (1986) Two‐and‐one‐half dimensional in‐plane wave propagation. Geophysical Prospecting, 34(5), 686–703. https://doi.org/10.1111/j.1365‐2478.1986.tb00488.x.
    [Google Scholar]
  5. Brittan, J., Bai, J., Delome, H., Wang, C. and Yingst, D. (2013) Full waveform inversion–the state of the art. First Break, 31(10), 75–82. https://doi.org/10.3997/1365‐2397.31.10.71541.
    [Google Scholar]
  6. Cassidy, N.J. (2007) Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies. Journal of Contaminant Hydrology, 94(1–2), 49–75. https://doi.org/10.1016/j.jconhyd.2007.05.002.
    [Google Scholar]
  7. Chew, W.C. and Lin, J.H. (1995) A frequency‐hopping approach for microwave imaging of large inhomogeneous bodies. IEEE Microwave and Guided Wave Letters, 5(12), 439–441. https://doi.org/10.1109/75.481854.
    [Google Scholar]
  8. Coscia, I., Greenhalgh, S.A., Linde, N., Doetsch, J., Marescot, L., Günther, T., et al. (2011) 3D crosshole ERT for aquifer characterization and monitoring of infiltrating river water. Geophysics, 76(2), G49–G59. https://doi.org/10.1190/1.3553003.
    [Google Scholar]
  9. Dafflon, B., Irving, J. and Barrash, W. (2011) Inversion of multiple intersecting high‐resolution crosshole GPR profiles for hydrological characterization at the Boise Hydrogeophysical Research Site. Journal of Applied Geophysics, 73(4), 305–314. https://doi.org/10.1016/j.jappgeo.2011.02.001.
    [Google Scholar]
  10. Dafflon, B. and Barrash, W. (2012) Three‐dimensional stochastic estimation of porosity distribution: benefits of using ground‐penetrating radar velocity tomograms in simulated‐annealing‐based or Bayesian sequential simulation approaches. Water Resources Research, 48(5), W05553. https://doi.org/10.1029/2011WR010916.
    [Google Scholar]
  11. Doetsch, J., Linde, N., Coscia, I., Greenhalgh, S.A. and Green, A.G. (2010) Zonation for 3D aquifer characterization based on joint inversions of multimethod crosshole geophysical data. Geophysics, 75(6), G53–G64. https://doi.org/10.1190/1.3496476.
    [Google Scholar]
  12. Dubois, A., Belkebir, K., Catapano, I. and Saillard, M., (2009) Iterative solution of the electromagnetic inverse scattering problem from the transient scattered field. Radio Science, 44(01), 1–13. https://doi.org/10.1029/2007RS003765.
    [Google Scholar]
  13. Eisenberg, D., Kauzmann, W. and Kauzmann, W. (2005) The Structure and Properties of Water. Oxford University Press.
    [Google Scholar]
  14. Ellefsen, K.J., Mazzella, A.T., Horton, R.J. and McKenna, J.R. (2011) Phase and amplitude inversion of crosswell radar data. Geophysics, 76(3), J1–J12. https://doi.org/10.1190/1.3554412.
    [Google Scholar]
  15. Ernst, J.R., Green, A.G., Maurer, H. and Holliger, K. (2007b) Application of a new 2D time‐domain full‐waveform inversion scheme to crosshole radar data. Geophysics, 72(5), J53–J64. https://doi.org/10.1190/1.2761848.
    [Google Scholar]
  16. Ernst, J.R., Maurer, H., Green, A.G. and Holliger, K. (2007a) Full‐waveform inversion of crosshole radar data based on 2‐D finite‐difference time‐domain solutions of Maxwell's equations. IEEE Transactions on Geoscience and Remote Sensing, 45(9), 2807–2828. https://doi.org/10.1109/TGRS.2007.901048
    [Google Scholar]
  17. Gueting, N., Klotzsche, A., van der Kruk, J., Vanderborght, J., Vereecken, H. and Englert, A. (2015) Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full‐waveform inversion and cone penetration tests. Journal of Hydrology, 524, 680–695. https://doi.org/10.1016/j.jhydrol.2015.03.030.
    [Google Scholar]
  18. Gueting, N., Klotzsche, A., van der Kruk, J., Vanderborght, J., Vereecken, H. and Englert, A., (2020) Corrigendum to ‘Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full‐waveform inversion and cone penetration tests’ [J. Hydrol. (2015) 680‐695]. Journal of Hydrology, 590, 125483. https://doi.org/10.1016/j.jhydrol.2020.125483.
    [Google Scholar]
  19. Holliger, K., Musil, M. and Maurer, H.R. (2001) Ray‐based amplitude tomography for crosshole georadar data: a numerical assessment. Journal of Applied Geophysics, 47(3–4), 285–298. https://doi.org/10.1016/S0926‐9851(01)00072‐6.
    [Google Scholar]
  20. Klotzsche, A., Jonard, F., Looms, M.C., van der Kruk, J. and Huisman, J.A. (2018) Measuring soil water content with ground penetrating radar: a decade of progress. Vadose Zone Journal, 17(1), 1–9. https://doi.org/10.2136/vzj2018.03.0052.
    [Google Scholar]
  21. Klotzsche, A., van der Kruk, J., Bradford, J. and Vereecken, H. (2014) Detection of spatially limited high‐porosity layers using crosshole GPR signal analysis and full‐waveform inversion. Water Resources Research, 50(8), 6966–6985. https://doi.org/10.1002/2013WR015177.
    [Google Scholar]
  22. Klotzsche, A., van der Kruk, J., Linde, N., Doetsch, J. and Vereecken, H. (2013) 3‐D characterization of high‐permeability zones in a gravel aquifer using 2‐D crosshole GPR full‐waveform inversion and waveguide detection. Geophysical Journal International, 195(2), 932–944. https://doi.org/10.1093/gji/ggt275
    [Google Scholar]
  23. Klotzsche, A., van der Kruk, J., Meles, G.A., Doetsch, J., Maurer, H. and Linde, N. (2010) Full‐waveform inversion of cross‐hole ground‐penetrating radar data to characterize a gravel aquifer close to the Thur River, Switzerland. Near Surface Geophysics, 8(6), 635–649. https://doi.org/10.3997/1873‐0604.2010054
    [Google Scholar]
  24. Klotzsche, A., van der Kruk, J., Meles, G. and Vereecken, H. (2012) Crosshole GPR full‐waveform inversion of waveguides acting as preferential flow paths within aquifer systems. Geophysics, 77(4), H57–H62. https://doi.org/10.1190/geo2011‐0458.1.
    [Google Scholar]
  25. Klotzsche, A., Vereecken, H. and van der Kruk, J. (2019a) GPR full‐waveform inversion of a variably saturated soil‐aquifer system. Journal of Applied Geophysics, 170, 103823. https://doi.org/10.1016/j.jappgeo.2019.103823.
    [Google Scholar]
  26. Klotzsche, A., Vereecken, H. and van der Kruk, J. (2019b) Review of crosshole ground‐penetrating radar full‐waveform inversion of experimental data: Recent developments, challenges, and pitfalls. Geophysics, 84(6), H13–H28. https://doi.org/10.1190/geo2018‐0597.1.
    [Google Scholar]
  27. Kowalsky, M.B., Finsterle, S., Peterson, J., Hubbard, S., Rubin, Y., Majer, E., et al. (2005) Estimation of field‐scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resources Research, 41(11), WR004237. https://doi.org/10.1029/2005WR004237.
    [Google Scholar]
  28. Kuroda, S., Takeuchi, M. and Kim, H.J. (2007) Full‐waveform inversion algorithm for interpreting crosshole radar data: a theoretical approach. Geosciences Journal, 11(3), 211–217. https://doi.org/10.1007/BF02913934.
    [Google Scholar]
  29. Kuroda, S., Jang, H. and Kim, H.J. (2009) Time‐lapse borehole radar monitoring of an infiltration experiment in the vadose zone. Journal of Applied Geophysics, 67(4), 361–366. https://doi.org/10.1016/j.jappgeo.2008.07.005.
    [Google Scholar]
  30. Landon, M.K., Rus, D.L. and Harvey, F.E. (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Groundwater, 39(6), 870–885. https://doi.org/10.1111/j.1745‐6584.2001.tb02475.x.
    [Google Scholar]
  31. Lavoué, F., Brossier, R., Métivier, L., Garambois, S. and Virieux, J. (2014) Two‐dimensional permittivity and conductivity imaging by full waveform inversion of multioffset GPR data: A frequency‐domain quasi‐Newton approach. Geophysical Journal International, 197(1), 248–268. https://doi.org/10.1093/gji/ggt528.
    [Google Scholar]
  32. Li, W., Englert, A., Cirpka, O.A. and Vereecken, H. (2008) Three‐dimensional geostatistical inversion of flowmeter and pumping test data. Groundwater, 46(2), 193–201. https://doi.org/10.1111/j.1745‐6584.2007.00419.x.
    [Google Scholar]
  33. Looms, M.C., Jensen, K.H., Binley, A. and Nielsen, L. (2008) Monitoring unsaturated flow and transport using cross‐borehole geophysical methods. Vadose Zone Journal, 7(1), 227–237. https://doi.org/10.2136/vzj2006.0129.
    [Google Scholar]
  34. Maurer, H. and Musil, M. (2004) Effects and removal of systematic errors in crosshole georadar attenuation tomography. Journal of Applied Geophysics, 55(3–4), 261–270. https://doi.org/10.1016/j.jappgeo.2004.02.003.
    [Google Scholar]
  35. Maurer, H., Greenhalgh, S. and Latzel, S. (2009) Frequency and spatial sampling strategies for crosshole seismic waveform spectral inversion experiments. Geophysics, 74(6), WCC79–WCC89. https://doi.org/10.1190/1.3157252.
    [Google Scholar]
  36. Meles, G., Greenhalgh, S., Van der Kruk, J., Green, A. and Maurer, H. (2012) Taming the non‐linearity problem in GPR full‐waveform inversion for high contrast media. Journal of Applied Geophysics, 78, 31–43. https://doi.org/10.1016/j.jappgeo.2011.12.001.
    [Google Scholar]
  37. Meles, G.A., Van der Kruk, J., Greenhalgh, S.A., Ernst, J.R., Maurer, H. and Green, A.G. (2010) A new vector waveform inversion algorithm for simultaneous updating of conductivity and permittivity parameters from combination crosshole/borehole‐to‐surface GPR data. IEEE Transactions on Geoscience and Remote Sensing, 48(9), 3391–3407. https://doi.org/10.1109/TGRS.2010.2046670.
    [Google Scholar]
  38. Mora, P. (1987) Nonlinear two‐dimensional elastic inversion of multioffset seismic data. Geophysics, 52(9), 1211–1228. https://doi.org/10.1190/1.1442384.
    [Google Scholar]
  39. Oberröhrmann, M., Klotzsche, A., Vereecken, H. and van der Krak, J. (2013) Optimization of acquisition setup for cross‐hole: GPR full‐waveform inversion using checkerboard analysis. Near Surface Geophysics, 11(2), 197–209. https://doi.org/10.3997/1873‐0604.2012045.
    [Google Scholar]
  40. Paz, C., Alcalá, F.J., Carvalho, J.M. and Ribeiro, L. (2017) Current uses of ground penetrating radar in groundwater‐dependent ecosystems research. Science of the Total Environment, 595, 868–885. https://doi.org/10.1016/j.scitotenv.2017.03.210.
    [Google Scholar]
  41. PetersonJr, J.E. (2001) Pre‐inversion corrections and analysis of radar tomographic data. Journal of Environmental and Engineering Geophysics, 6(1), 1–18. https://doi.org/10.4133/JEEG6.1.1.
    [Google Scholar]
  42. Pinard, H., Garambois, S., Métivier, L., Dietrich, M., Sénéchal, G. and Rousset, D. (2016) Full‐waveform inversion of GPR data acquired between boreholes in Rustrel carbonates. E3S Web of Conferences, 12, 01002). https://doi.org/10.1051/e3sconf/20161201002.
    [Google Scholar]
  43. Polak, E. and Ribiere, G. (1969) Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis‐Modélisation Mathématique et Analyse Numérique, 3(R1), 35–43.
    [Google Scholar]
  44. Pratt, R.G., Shin, C. and Hick, G.J. (1998) Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion. Geophysical Journal International, 133(2), 341–362. https://doi.org/10.1046/j.1365‐246X.1998.00498.x.
    [Google Scholar]
  45. Shin, C. and Cha, Y.H. (2008) Waveform inversion in the Laplace domain. Geophysical Journal International, 173(3), 922–931. https://doi.org/10.1111/j.1365‐246X.2008.03768.x.
    [Google Scholar]
  46. SimmerC., Thiele‐EichI., MasbouM., AmelungW., BogenaH., CrewellS., DiekkrügerB., EwertF., Hendricks FranssenH. J., HuismanJ. A., KemnaA. (2015) Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System. Bulletin of the American Meteorological Society, 96 (10), 1765–1787. https://doi.org/10.1175/bams-d-13-00134.1.
    [Google Scholar]
  47. Tarantola, A. (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266. https://doi.org/10.1190/1.1441754.
    [Google Scholar]
  48. Tillmann, A., Englert, A., Nyari, Z., Fejes, I., Vanderborght, J. and Vereecken, H. (2008) Characterization of subsoil heterogeneity, estimation of grain size distribution and hydraulic conductivity at the Krauthausen test site using cone penetration test. Journal of Contaminant Hydrology, 95(1–2), 57–75. https://doi.org/10.1016/j.jconhyd.2007.07.013.
    [Google Scholar]
  49. Vanderborght, J. and Vereecken, H. (2001) Analyses of locally measured bromide breakthrough curves from a natural gradient tracer experiment at Krauthausen. Journal of Contaminant Hydrology, 48(1–2), 23–43. https://doi.org/10.1016/S0169‐7722(00)00176‐5.
    [Google Scholar]
  50. van der Kruk, J., Gueting, N., Klotzsche, A., He, G., Rudolph, S., von Hebel, C. and Vereecken, H. (2015) Quantitative multi‐layer electromagnetic induction inversion and full‐waveform inversion of crosshole ground penetrating radar data. Journal of Earth Science, 26(6), 844–850. https://doi.org/10.1007/s12583‐015‐0610‐3.
    [Google Scholar]
  51. Vereecken, H., Döring, U., Hardelauf, H., Jaekel, U., Hashagen, U., Neuendorf, O., et al. (2000) Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment. Journal of Contaminant Hydrology, 45(3–4), 329–358. https://doi.org/10.1016/S0169‐7722(00)00107‐8.
    [Google Scholar]
  52. Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., et al. (2016) Modeling soil processes: review, key challenges, and new perspectives. Vadose zone Journal, 15(5). https://doi.org/10.2136/vzj2015.09.0131.
    [Google Scholar]
  53. Virieux, J. and Operto, S. (2009) An overview of full‐waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1–WCC26. https://doi.org/10.1190/1.3238367.
    [Google Scholar]
  54. Wang, G., Yuan, S. and Wang, S. (2019) Retrieving low‐wavenumber information in FWI: an efficient solution for cycle skipping. IEEE Geoscience and Remote Sensing Letters, 16(7), 1125–1129. https://doi.org/10.1109/LGRS.2019.2892998.
    [Google Scholar]
  55. Wu, R.S., Luo, J. and Wu, B. (2014) Seismic envelope inversion and modulation signal model. Geophysics, 79(3), WA13–WA24. https://doi.org/10.1190/geo2013‐0294.1.
    [Google Scholar]
  56. Yang, X., Klotzsche, A., Meles, G., Vereecken, H. and Van Der Kruk, J. (2013) Improvements in crosshole GPR full‐waveform inversion and application on data measured at the Boise Hydrogeophysics Research Site. Journal of Applied Geophysics, 99, 114–124. https://doi.org/10.1016/j.jappgeo.2013.08.007.
    [Google Scholar]
  57. Zhou, Z., Klotzsche, A., Hermans, T., Nguyen, F., Schmäck, J., Haruzi, P., et al., (2020) 3D aquifer characterization of the Hermalle‐sous‐Argenteau test site using crosshole ground‐penetrating radar amplitude analysis and full‐waveform inversion. Geophysics, 85(6), H133–H148. https://doi.org/10.1190/geo2020‐0067.1.
    [Google Scholar]
  58. Zhou, Z., Klotzsche, A., Schmäck, J., Vereecken, H. and van der Kruk, J., (2021) Improvement of GPR full‐waveform inversion images using cone penetration test data. Geophysics, 86(3), 1–74. https://doi.org/10.1190/geo2020‐0283.1.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12154
Loading
/content/journals/10.1002/nsg.12154
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 2D , Data processing , Ground‐penetrating radar and Inversion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error