1887
Volume 20, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

ABSTRACT

In a novel approach, we have carried out controlled‐source and radio‐magnetotelluric measurements in the frequency range of 2–250 kHz on a frozen lake located over a planned major multi‐lane underground road tunnel near the city of Stockholm. The aim was to gain a better understanding of the resistivity variations above and, potentially, within the crystalline bedrock. Previous studies on the lake water using the boat‐towed radio‐magnetotelluric technique at the higher end of the frequency band lacked resolution at depth and could not provide conclusive information about bedrock level and potential fracture systems within the bedrock. Taking advantage of Nordic winters, we measured four profiles on the frozen lake complementing the previously acquired boat‐towed radio‐magnetotelluric data utilizing a double horizontal magnetic dipole transmitter that generated signals down to 1 kHz. The new resistivity models, incorporating the lower frequency data, show improvements and deeper penetrations based on a combined analysis of penetration depth, data misfits and sensitivity studies. The resistivity models also show better correlation with the available high‐resolution shallow water seismic reflection data and the geological observations. A potential fracture system within the bedrock can also be inferred better in the new models. The idea of running similar surveys on frozen lakes can be further exploited in similar conditions in countries such as Sweden, where approximately 7% of the land is covered by freshwater bodies and poorly explored for infrastructure planning projects.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12180
2022-01-14
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/nsg/20/1/nsg12180.html?itemId=/content/journals/10.1002/nsg.12180&mimeType=html&fmt=ahah

References

  1. Andersson, M. and Malehmir, A. (2018) Unravelling the internal architecture of the Alnö alkaline and carbonatite complex (central Sweden) using 3D models of gravity and magnetic data. Tectonophysics, 740–741, 53–71.
    [Google Scholar]
  2. BastaniM., MalehmirA., IsmailN., PedersenL. B., HedjaziF. (2009) Delineating hydrothermal stockwork copper deposits using controlled‐source and radio‐magnetotelluric methods: A case study from northeast Iran. Geophysics, 74(5), B167–B181. https://doi.org/10.1190/1.3174394
    [Google Scholar]
  3. BastaniM., HübertJ., KalscheuerT., PedersenL. B., GodioA., BernardJ. (2012) 2D joint inversion of RMT and ERT data versus individual 3D inversion of full tensor RMT data: An example from Trecate site in Italy. Geophysics, 77(4), WB233–WB243. https://doi.org/10.1190/geo2011‐0525.1
    [Google Scholar]
  4. Bastani, M. (2001) EnviroMT – A New Controlled Source /Radio Magnetotelluric System. PhD thesis: Acta Universitatis Upsaliensis, Uppsala Dissertations from the Faculty of Science and Technology32.
    [Google Scholar]
  5. Bastani, M., Persson, L., Mehta, S. and Malehmir, A. (2015) Boat‐towed radio‐magnetotellurics (RMT) – a new technique and case study from the city of Stockholm. Geophysics, 80, B193–B202.
    [Google Scholar]
  6. Bastani, M., Savvaidis, A., Pedersen, L.B. and Kalscheuer, T. (2011) CSRMT measurements in the frequency range of 1–250 kHz to map a normal fault in the Volvi basin, Greece. Journal of Applied Geophysics, 75, 180–195. https://doi.org/10.1016/j.jappgeo.2011.07.001
    [Google Scholar]
  7. Constable, S.C., Parker, R.L. and Constable, C.G. (1987) Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289–300.
    [Google Scholar]
  8. DehghannejadM., MalehmirA., SvenssonM., LindénM., MöllerH. (2017) High‐resolution reflection seismic imaging for the planning of a double‐train‐track tunnel in the city of Varberg, southwest Sweden. Near Surface Geophysics, 15(3), 226–240. https://doi.org/10.3997/1873‐0604.2017011
    [Google Scholar]
  9. Dugan, H.A., Arcone, S.A., Obryk, M.K. and Doran, P.T. (2016) High‐resolution ground‐penetrating radar profiles of perennial lake ice in the McMurdo Dry Valleys, Antarctica: horizon attributes, unconformities, and subbottom penetration. Geophysics, 81(1), WA13–WA20. https://doi.org/10.1190/geo2015‐0159.1
    [Google Scholar]
  10. Dugan, H.A., Doran, P.T., Tulaczyk, S., Mikucki, J.A., Arcone, S.A., Auken, E.et al. (2015) Subsurface imaging reveals a confined aquifer beneath an ice‐sealed Antarctic lake. Geophysical Research Letters, 42, 96–103. https://doi.org/10.1002/2014GL062431
    [Google Scholar]
  11. Goldstein, M.A. and Strangway, D.W. (1975) Audiofrequency magnetotellurics with a grounded electric dipole source. Geophysics, 40, 669–683.
    [Google Scholar]
  12. Huang, H. (2005) Depth of investigation for small broadband electromagnetic sensors. Geophysics, 70(6), G135–G142.
    [Google Scholar]
  13. Ignea, S. (2015), Major Fracture Zones in Fiskarfjärden, Stockholm. MSc thesis, Uppsala Universitet.
    [Google Scholar]
  14. Kalscheuer, T., Pedersen, L.B. and Siripunvaraporn, W. (2008) Radiomagnetotelluric two‐dimensional forward and inverse modelling accounting for displacement currents. Geophysical Journal International, 175, 486–514. https://doi.org/10.1111/j.1365‐246X.2008.03902.x
    [Google Scholar]
  15. Li, X. and Pedersen, L.B. (1991) Controlled source tensor magnetotelluric. Geophysics, 56, 1456–1461.
    [Google Scholar]
  16. MalehmirA., ZhangF., DehghannejadM., LundbergE., DöseC., FribergO., BrodicB., PlaceJ., SvenssonM., MöllerH. (2015) Planning of urban underground infrastructure using a broadband seismic landstreamer — Tomography results and uncertainty quantifications from a case study in southwestern Sweden. Geophysics, 80(6), B177–B192. https://doi.org/10.1190/geo2015‐0052.1
    [Google Scholar]
  17. Mehta, S., Bastani, M., Malehmir, A. and Pedersen, L.B. (2017) Resolution and sensitivity of boat‐towed RMT data to delineate fracture zones–example of the Stockholm bypass multi‐lane tunnel. Journal of Applied Geophysics, 139C, 131–143. https://doi.org/10.1016/j.jappgeo.2017.02.012.
    [Google Scholar]
  18. Nilsson, P. (2008) Sjömätningar i tre passager under Mälaren, Förbifart Stockholm Teknisk Rapport Nr 2008–11, GeoNova Consulting AB, Sweden (www.geonovaconsulting.se).
  19. Pedersen, L.B., Bastani, M. and Dynesius, L. (2005) Groundwater exploration using combined controlled‐source and radiomagnetotelluric techniques. Geophysics, 70, G8–G15.
    [Google Scholar]
  20. Pedersen, L.B., Bastani, M. and Dynesius, L. (2006) Radiotransmitters in Europe and their use in high resolution geophysical exploration of near‐surface geology. Geophysics, 71(6), G279–G284.
    [Google Scholar]
  21. Pedersen, L.B. and Engels, M. (2005) Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor. Geophysics, 70, 31–41.
    [Google Scholar]
  22. Persson, L. (2001) Plane Wave Electromagnetic Measurements for Imaging Fracture Zones. PhD thesis. Acta Universitatis Upsaliensis, Uppsala Dissertations from the Faculty of Science and Technology30.
    [Google Scholar]
  23. Ronczka, M., Hellman, K., Günther, T., Wisen, R. and Dahlin, T. (2017) Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory. Solid Earth, 8, 671–682. https://doi.org/10.5194/se‐8‐671‐2017
    [Google Scholar]
  24. Spies, B.R. (1989) Depth of investigation in electromagnetic sounding methods. Geophysics, 54(7), 872–888.
    [Google Scholar]
  25. SaraevA., SimakovA., ShlykovA., TezkanB. (2017) Controlled source radiomagnetotellurics: A tool for near surface investigations in remote regions. Journal of Applied Geophysics, 146, 228–237. https://doi.org/10.1016/j.jappgeo.2017.09.017
    [Google Scholar]
  26. Saraev, A., Simakov, A., Shlykov, A. and Tezkan, B. (2011) Controlled‐source adiomagnetotellurics: a tool for near surface investigations in remote regions. Journal of Applied Geophysics, 146(2017), 228–237.
    [Google Scholar]
  27. SchwambornG. J., DixJ. K., BullJ. M., RacholdV. (2002) High‐resolution seismic and ground penetrating radar‐geophysical profiling of a thermokarst lake in the western Lena Delta, Northern Siberia. Permafrost and Periglacial Processes, 13(4), 259–269. https://doi.org/10.1002/ppp.430
    [Google Scholar]
  28. Shlykov, A.A. and Saraev, A.K. (2015) Estimating the macroanisotropy of a horizontally layered section from controlled‐source radiomagnetotelluric soundings. Izvestiya, Physics of the Solid Earth, 51(4), 583–601.
    [Google Scholar]
  29. Shlykov, A., Saraev, A. and Tezkan, B. (2020) Study of a permafrost area in the northern part of Siberia using controlled source radiomagnetotellurics. Pure and Applied Geophysics, 177, 5845–5859. https://doi.org/10.1007/s00024‐020‐02621‐x
    [Google Scholar]
  30. Siripunvaraporn, W. and Egbert, E. (2000) An efficient data‐subspace inversion method for 2D magnetotelluric data. Geophysics, 65, 791–803.
    [Google Scholar]
  31. Streich, R. (2016) Controlled‐source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37, 47–80.
    [Google Scholar]
  32. Streich, R. and Becken, M. (2010) Electromagnetic fields generated by finitelength wire sources: comparison with point dipole solutions. Geophysical Prospecting, 59, 361–374.
    [Google Scholar]
  33. Tezkan, B., Hordt, A. and Gobashy, M. (2000) Two‐dimensional radiomagnetotelluric investigation of industrial and domestic waste sites in Germany. Journal of Applied Geophysics, 44, 237–256.
    [Google Scholar]
  34. Tezkan, B., Muttaqien, I. and Saraev, A. (2019) Mapping of buried faults using the 2D modelling of far‐field controlled source radio magnetotelluric data. Pure and Applied Geophysics, 176, 751–766.
    [Google Scholar]
  35. Turberg, P., Muller, I. and Flury, F. (1994) Hydrogeological investigation of porous environments by audiomagnetotelluric resistivity. Journal of Applied Geophysics, 31, 133–143.
    [Google Scholar]
  36. Ugalde, H., Heureux, E.L., Lachapelle, R. and Milkereit, B. (2006) Measuring gravity on ice: an example from Wanapitei Lake, Ontario, Canada. Geophysics, 71(3), J23–J29. https://doi.org/10.1190/1.2189387
    [Google Scholar]
  37. Wang, S., Bastani, M., Constable, S., Kalscheuer, T. and Malehmir, A. (2019) Boat‐towed radio‐magnetotelluric and controlled‐source audio‐magnetotelluric study to resolve fracture zones at Äspö Hard Rock Laboratory site, Sweden. Geophysical Journal International, 218(2), 1008–1031. https://doi.org/10.1093/gji/ggz162
    [Google Scholar]
  38. Wang, S., Kalscheuer, T., Bastani, M., Malehmir, A., Pedersen, L.B., Dahlin, T. and Meqbel, N. (2018) Joint inversion of lake‐floor electrical resistivity tomography and boat‐towed radio‐magnetotelluric data illustrated on synthetic data and an application from the Äspö Hard Rock Laboratory site, Sweden. Geophysical Journal International, 213(1), 511–533. https://doi.org/10.1093/gji/ggx414
    [Google Scholar]
  39. Wannamaker, P.E. (1997) Tensor CSAMT survey over the sulphur springs thermal area, Valles Caldera, New Mexico, USA, Part II. Implications for CSAMT methodology. Geophysics, 62, 466–476.
    [Google Scholar]
  40. Yavich, N., Malovichko, M. and Shlykov, A. (2020) Parallel simulation of audio‐ and radio‐magnetotelluric data. Minerals, 10(1), 42. https://doi.org/10.3390/min10010042
    [Google Scholar]
  41. Zonge, K.L. and Hughes, L.J. (1991) Controlled source audio‐frequency magnetotellurics. Electromagnetic Methods in Applied Geophysics, V.2. Applications. Series: Investigations in Geophysics 3, 713–809.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12180
Loading
/content/journals/10.1002/nsg.12180
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Electromagnetic , resistivity , shallow subsurface and Tunnel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error