1887
Volume 20, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

A high‐resolution microtremor measurement in Greater Srinagar city of the Kashmir valley has been analysed to image 2D and 3D subsurface geological complexities. This region is located in the highly seismogenic Himalayan belt and sits atop a deep sedimentary lake bed with a laterally varying thickness of soft sediments. Srinagar region is a major economic centre and the capital city of the Kashmir valley with 2 million inhabitants living at high seismic risk. To assess the subsurface complexity beneath the city, we present: (1) high‐resolution subsurface shear wave velocity structure using the horizontal‐to‐vertical spectral ratio inversion; (2) shear wave velocity for top 30 metres of soil column () map with National Earthquake Hazards Reduction Program site classification; (3) comparison of maps calculated from horizontal‐to‐vertical spectral ratio inversion and topographic slope methods; and (4) azimuthal behaviour of horizontal‐to‐vertical spectral ratio peaks, all of which unravel the subsurface spatial heterogeneity and suitability for the building of engineering structures in the study area. In addition, a new matlab code is applied to generate 3D subsurface slices in the study region in different directions using its pre‐generated 2D profile data. The presented potentiality of microtremor horizontal‐to‐vertical spectral ratio technique in Srinagar region, which lies on the eastern edge of the basin with significant topographic irregularities, indicates an uneven distribution of local site effects (primary and secondary) in the case of strong ground motion. The comprehensive results can be promising in engineering analyses of local ground and structural responses in order to mitigate the impact of earthquake occurrence and seismic risk in the city and adjoining regions.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12186
2022-01-14
2022-01-18
Loading full text...

Full text loading...

References

  1. Ahmad, S., Bhat, M.I., Madden, C. and Bali, B.S. (2014) Geomorphic analysis reveals active tectonic deformation on the eastern flank of the Pir Panjal range, Kashmir valley. India. Arabian Journal of Geosciences, 7, 2225–2235. https://doi.org/10.1007/s12517‐013‐0900‐y.
    [Google Scholar]
  2. Aki, K. and Richards, P.G. (2002) Quantitative Seismology, 700. 2nd ed.Sausalito, CA: University Science Books.
    [Google Scholar]
  3. Albarello, D. and Lunedei, E. (2011) Structure of ambient vibration wavefield in the frequency range of engineering interest ([0.5, 20] Hz): insights from numerical modelling. Near Surface Geophysics, 9, 543–559
    [Google Scholar]
  4. Allen, T.I. and Wald, D.J. (2009) On the use of high‐resolution topographic data as a proxy for seismic site conditions (VS30). Bulletin of the Seismological Society of America, 99(2A), 935–943. https://doi.org/10.1785/0120080255
    [Google Scholar]
  5. Ambraseys, N. and Jackson, D. (2003) A note on the early earthquakes in northern India and southern Tibet. Current Science India, 84, 570–582.
    [Google Scholar]
  6. Anderson John, G., Lee, Y., Zeng, Y. and Day, S. (1996) Control of strong motion by the upper 30 meters. Bulletin of the Seismological Society of America, 86(6), 1749–1759.
    [Google Scholar]
  7. Bard, P.‐Y. (1982) Diffracted waves and displacement field over two‐dimensional elevated topographies. Geophysical Journal International, 71(3), 731–760. https://doi.org/10.1111/j.1365‐246X.1982.tb02795.x
    [Google Scholar]
  8. Bhatt, D.K. (1989) Lithostratigraphy of Karewa group, Kashmir valley, India, and a critical review of its fossil record. Memoirs of Geological Survey of India, 122, 1–84. https://trove.nla.gov.au/version/25342415.
    [Google Scholar]
  9. Bignardi, S., Mantovani, A. and Zeid, N.A. (2016) OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers & Geosciences, 93, 103–113. https://doi.org/10.1016/j.cageo.2016.05.009.
    [Google Scholar]
  10. Bignardi, S., Yezzi, A., Fiussello, S. and Comelli, A. (2018) OpenHVSR – processing toolkit: enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content. Computers & Geosciences, 120, 10–20. https://doi.org/10.1016/j.cageo.2018.07.006.
    [Google Scholar]
  11. Bilham, R. (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geological Society London Special Publications SP, 483, 423. https://doi.org/10.1144/SP483.16.
    [Google Scholar]
  12. Bilham, R., Bali, B.S., Bhat, M.I. and Hough, S. (2010) Historical earthquakes in Srinagar, Kashmir: clues from the Shiva Temple at Pandrethan. In: Sintubin, M. (Ed.) Ancient Earthquakes. Boulder, CO: Geological Society of America, pp. 107–117. https://doi.org/10.1130/2010.2471(10).
    [Google Scholar]
  13. BIS
    BIS . (2016) Criteria for earthquake resistant design of structures. New Delhi: Bureau of Indian Standards.
    [Google Scholar]
  14. Bonnefoy‐Claudet, S.C., Cornou, P.Y.B. and Cotton, F. (2004) Nature of noise wavefield. SESAME report, D13.08.
  15. Boore, D.M. (2004) Estimating V̄s (30) (or NEHRP site classes) from shallow velocity models (depths < 30 m). Bulletin of the Seismological Society of America, 94(2), 591–597. https://doi.org/10.1785/0120030105
    [Google Scholar]
  16. Borcherdt, R.D. (1994) Estimates of site‐dependent response spectra for design (methodology and justification). Earthquake Spectrum, 10, 617–653. https://doi.org/10.1193/1.1585791.
    [Google Scholar]
  17. Borcherdt, R.D. and Glassmoyer, G. (1992) On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta Earthquake in the San Francisco Bay region, California. Bulletin of the Seismological Society of America, 82, 603–641.
    [Google Scholar]
  18. BSSC
    BSSC (2003) Building seismic safety council, NEHRP recommended provisions for seismic regulations for new buildings and other structures. Report FEMA‐450 (Provisions), Federal Emergency Management Agency (FEMA), Washington.
  19. Burbank, D.W. and Reynolds, R.G.H., (1984) Sequential late Cenozoic structural disruption of the northern Himalayan foredeep. Nature, 311, 114–118. https://doi.org/10.1038/311114a0
    [Google Scholar]
  20. Burbank, D.W. and Johnson, G.D. (1982) Intermontane‐basin development in the past 4 Myr in the north‐west Himalaya. Nature, 298, 432–436.
    [Google Scholar]
  21. Burbank, D.W. and Johnson, G.D. (1983) The late chronologic and stratigraphic development of the Kashmir intermontane basin, northwestern India. Palaeogeography, Palaeoclimatology, Palaeoecology, 43, 205–235. https://doi.org/10.1016/0031‐01828390012‐3.
    [Google Scholar]
  22. Burjanek, J., Fäh, D., Pischiutta, M., Rovelli, A., Calderoni, G. and Bard, P.Y., NERA‐JRA1 working group (2014) Site effects at sites with pronounced topography: overview and recommendations report for EU project NERA. 64 pp. https://doi.org/10.3929/ethz‐a‐010222426.
  23. Cheng, T., Cox, B.R., Vantassel, J.P. and Manuel, L. (2020) A statistical approach to account for azimuthal variability in single‐station HVSR measurements. Geophysical Journal International, 223(2), 1040–1053. https://doi.org/10.1093/gji/ggaa342
    [Google Scholar]
  24. Congdon, P. (2014) Applied Bayesian Modelling: Wiley Series in Probability and Statistics. John Wiley and Sons Ltd.
    [Google Scholar]
  25. Cox, B.R., Cheng, T., Vantassel, J.P. and Manuel, L. (2020) A statistical representation and frequency‐domain window‐rejection algorithm for single‐station HVSR measurements. Geophysical Journal International, 221(3), 2170–2183.
    [Google Scholar]
  26. Dar, R.A., Romshoo, S.A., Chandra, R. and Ahmad, I. (2014) Tectono‐geomorphic study of the Karewa Basin of Kashmir Valley. Journal of Asian Earth Sciences, 92, 143–156. https://doi.org/10.1016/j.jseaes.2014.06.018.
    [Google Scholar]
  27. Dasgupta, S., Narula, P.L., Acharya, S.K. and Banerjee, J. (2000) Seismotectonic atlas of India and its environs. Calcutta: Geological Survey of India.
    [Google Scholar]
  28. Di GiacomoD., StorchakD. A., SafronovaN., OzgoP., HarrisJ., VerneyR., BondarI. (2014) A New ISC Service: The Bibliography of Seismic Events. Seismological Research Letters, 85, (2), 354–360. https://doi.org/10.1785/0220130143
    [Google Scholar]
  29. Díaz, J., Ruiz, M., Sánchez‐Pastor, P.S. and Romero, P. (2017) Urban seismology: on the origin of earth vibrations within a city. Scientific Reports, 7, 15296. https://doi.org/10.1038/s41598‐017‐15499‐y
    [Google Scholar]
  30. Dobry, R., Borcherdt, R.D., Crouse, C.B., Idriss, I.M., Joyner, W.B., Martin, G.R.et al. (2000) New site coefficients and site classification system used in recent building seis‐ mic code provisions. Earthquake Spectra, 16, 41–67.
    [Google Scholar]
  31. Dubey, R.K., Dar, J.A. and Kothyari, G.C., (2017) Evaluation of relative tectonic perturbations of the Kashmir Basin, Northwest Himalaya, India: an integrated morphological approach. Journal of Asian Earth Sciences, 148, 153–172.
    [Google Scholar]
  32. EERI Newsletter
    EERI Newsletter , (2006) Special earthquake report from February. Newsletter. https://www.eeri.org/2005/10/kashmir‐2/
    [Google Scholar]
  33. Field, E.H. and Jacob, K.H. (1995) A comparison and test of various site response estimation techniques including three that are non‐reference‐site dependent. Bulletin of Seismological Society of America, 86, 991–1005.
    [Google Scholar]
  34. Foti, S., Comina, C., Boiero, D. and Socco, L.V. (2009) Non‐uniqueness in surface‐wave inversion and consequences on seismic site response analyses. Soil Dynamics and Earthquake Engineering, 29, 982–993.
    [Google Scholar]
  35. Foti, S., Lai, C., Rix, G.J. and Strobbia, C. (2014) Surface Wave Methods for Near‐Surface Site Characterization. CRC Press.
    [Google Scholar]
  36. Foti, S., Parolai, S., Albarello, D. and Picozzi, M. (2011b) Application of surface‐wave methods for seismic site characterization. Surveys in Geophysics, 32, 777–825.
    [Google Scholar]
  37. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B. (2014) Bayesian Data Analysis, 3rd ed.CRC Press, Taylor & Francis Group, LLC.
    [Google Scholar]
  38. Gupta, S.V., Parvez, I.A., Khan, A.P.K. and Chandra, R. (2020) Site effects investigation in Srinagar city of Kashmir basin using microtremor and its inversion. Journal of Earthquake Engineering. https://doi.org/10.1080/13632469.2020.1816232
    [Google Scholar]
  39. Hadley, P.K., Askar, A. and Cakmak, A.S. (1991) Subsoil geology and soil amplification in Mexico Valley. Soil Dynamics and Earthquake Engineering, 10, 101–109. https://doi.org/10.1016/0267‐72619190040‐7.
    [Google Scholar]
  40. Hough, S., Friberg, P.A., Busby, R., Field, E.F., Jacob, K.H. and Borcherdt, R.D. (1990) Sediment‐induced amplification and the collapse of the Nimitz Freeway. Nature, 344, 853–855. https://doi.org/10.1038/344853a0
    [Google Scholar]
  41. Huang, D., Sun, P., Jin, F. and Chunyang, D. (2021) Topographic amplification of ground motions incorporating uncertainty in subsurface soils with extensive geological borehole data. Soil Dynamics and Earthquake Engineering, 141, 106441. https://doi.org/10.1016/j.soildyn.2020.106441.
    [Google Scholar]
  42. Imperatori, W. and Mai, P.M. (2015) The role of topography and lateral velocity heterogeneities on near‐source scattering and ground‐motion variability. Geophysical Journal International, 202 (3), 2163–2181. https://doi.org/10.1093/gji/ggv281
    [Google Scholar]
  43. Jade, S., Mir, R.R., Vivek, C.G., Shrungeshwara, T.S., Parvez, I.A., Chandra, R., et al., (2020) Crustal deformation rates in Kashmir valley and adjoining regions from continuous GPS measurements from 2008 to 2019. Scientific Reports, 10, 17927. https://doi.org/10.1038/s41598‐020‐74776‐5.
    [Google Scholar]
  44. Jones, E.A. (1885) Report on the Kashmir earthquake of 30th May 1885. Geological Survey of India XVIII, 4, 221–227.
    [Google Scholar]
  45. Khattri, K.N. (1999) An evaluation of the earthquake hazard and risk in northern India. Himalayan Geology, 20, 1–46.
    [Google Scholar]
  46. Ktenidou, O.J., Chávez‐García, F.J., Raptakis, D. and Pitilakis, K.D. (2016) Directional dependence of site effects observed near a basin edge at Aegion, Greece, Bulletin of Earthquake Engineering, 14(3), 623–645.
    [Google Scholar]
  47. Lunedei, E. and Albarello, D. (2010) Theoretical HVSR from the full wave field modelling of ambient vibrations in a weakly dissipative layered Earth. Geophysical Journal International, 181, 1093–1108. https://doi.org/10.1111/j.1365‐246X.2010.04560.x.
    [Google Scholar]
  48. Lunedei, E. and Albarello, D. (2015) Horizontal‐to‐vertical spectral ratios from a full‐ wavefield model of ambient vibrations generated by a distribution of spatially correlated surface sources. Geophysical Journal International, 201, 1140–1153.
    [Google Scholar]
  49. Lunedei, E. and Malischewsky, P. (2015) A review and some new issues on the theory of the H/V technique for ambient vibrations. In: Perspectives on European Earthquake Engineering and Seismology. Springer, pp. 371–394.
    [Google Scholar]
  50. Massa, M., Barani, S. and Lovati, S. (2014) Overview of topographic effects based on experimental observations: meaning, causes and possible interpretations. Geophysical Journal International, 197 (3), 1537–1550. https://doi.org/10.1093/gji/ggt341
    [Google Scholar]
  51. Matsushima, S., Hirokawa, T., De Martin, F., Kawase, H. and Sánchez‐Sesma, F.J., (2014) The effect of lateral heterogeneity on horizontal‐to‐vertical spectral ratio of microtremors inferred from observation and synthetics. Bulletin of the Seismological Society of America, 104(1), 381–393.
    [Google Scholar]
  52. Matsushima, S., Kosaka, H. and Kawase, H., (2017) Directionally dependent horizontal‐to‐vertical spectral ratios of microtremors at Onahama, Fukushima, Japan. Earth, Planets and Space, 69(1), 96.
    [Google Scholar]
  53. Mir, R.R., ParvezI.A., GaurV.K., ChandraA.R. and RomshooS.A. (2017) Crustal structure beneath the Kashmir basin adjoining the Western Himalayan syntaxis. Bulletin of Seismological Society of America, 107, 2443–2458. https://doi.org/10.1785/0120150334
    [Google Scholar]
  54. Molnar, S., Cassidy, J.F., Castellaro, S., Cornou, C., Crow, H., Hunter, J.A., et al. (2018) Application of microtremor horizontal‐to‐vertical spectral ratio (MHVSR) analysis for site characterization: state of the art. Surveys in Geophysics, 39, 613–631. https://doi.org/10.1007/s10712‐018‐9464‐4
    [Google Scholar]
  55. MolnarSheri, DossoStan E., CassidyJohn F. (2010) Bayesian inversion of microtremor array dispersion data in southwestern British Columbia. Geophysical Journal International, 183, (2), 923–940. https://doi.org/10.1111/j.1365‐246x.2010.04761.x
    [Google Scholar]
  56. Mucciarelli, M. and Gallipoli, M.R. (2001) A critical review of 10 years of microtremor HVSR technique. Bollettino di Geofisica Teorica ed Applicata, 42, 255–266.
    [Google Scholar]
  57. Okada, H. (2003) The Microtremor Survey Method. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801740.
    [Google Scholar]
  58. Paolucci, R. (2002) Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering and Structural Dynamics, 31, 1831–1853. https://doi.org/10.1002/eqe.192
    [Google Scholar]
  59. Reiter, L. (1990) Earthquake Hazard Analysis. New York: Columbia University Press. https://link.springer.com/article/10.1007%2FBF02125772.
    [Google Scholar]
  60. SpudichP, HellwegM, LeeW. H. K. (1996) Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bulletin of the Seismological Society of America, 86, (1B), S193–S208. https://doi.org/10.1785/bssa08601bs193
    [Google Scholar]
  61. Sánchez‐Sesma, F.J., Rodríguez, M., Iturrarán‐Viveros, U., Luzón, F., Campillo, M., Margerin, L., et al. (2011) A theory for microtremor H/V spectral ratio: application for a layered medium. Geophysical Journal International, 186, 221–225. https://doi.org/10.1111/j.1365‐246X.2011.05064.x.
    [Google Scholar]
  62. Schiffman, C., Bali, B.S., Szeliga, W. and Bilham, R. (2013) Seismic slip deficit in the Kashmir Himalaya from GPS observations. Geophysical Research Letters, 40, 5642–5645. https://doi.org/10.1002/2013GL057700.
    [Google Scholar]
  63. Shah, A.A. (2013) Earthquake geology of Kashmir basin and its implication for future large earthquakes. International Journal of Earth Sciences, 102(7), 1957–1966.
    [Google Scholar]
  64. SinghA. P., ShuklaArjav, KumarM. Ravi, ThakkarM. G. (2017) Characterizing Surface Geology, Liquefaction Potential, and Maximum Intensity in the Kachchh Seismic Zone, Western India, through Microtremor Analysis. Bulletin of the Seismological Society of America, 107, (3), 1277–1292. https://doi.org/10.1785/0120160264
    [Google Scholar]
  65. Snover, D., Johnson, C.W., Bianco, M.J., Gerstoft, P. (2020) Deep clustering to identify sources of urban seismic noise in long beach. California. Seismological Research Letters. https://doi.org/10.1785/0220200164
    [Google Scholar]
  66. Socco, L., Foti, S. and Boiero, D. (2010) Surface‐wave analysis for building near‐surface velocity models – established approaches and new perspectives. Geophysics, 75(5), 75A83–75A102.
    [Google Scholar]
  67. Stevens, V.L. and Avouac, J.P. (2015) Interseismic coupling on the main Himalayan Thrust. Geophysical Research Letters, 42, 5828–5837. https://doi.org/10.1002/2015GL064845.
    [Google Scholar]
  68. Thakur, V.C., Jayangondaperumal, R. and Malik, M.A. (2010) Redefining Medlicott–Wadia's main boundary fault from Jhelum to Yamuna: an active fault strand of the main boundary thrust in northwest Himalaya. Tectonophysics, 489, 29–42. https://doi.org/10.1016/j.tecto.2010.03.014.
    [Google Scholar]
  69. Tsai, N.C. and Housner, G.W. (1970) Calculation of surface motions of a layered half‐space. Bulletin of Seismological Society of America, 60, 1625–1651.
    [Google Scholar]
  70. Uebayashi, H., Kawabe, H. and Kamae, K., (2012) Reproduction of microseism H/V spectral features using a three‐dimensional complex topographical model of the sediment‐bedrock interface in the Osaka sedimentary basin. Geophysical Journal International, 189(2), 1060–1074.
    [Google Scholar]
  71. Vantassel, J., Cox, B., Wotherspoon, L. and Stolte, A. (2018) Mapping depth to bedrock, shear stiffness, and fundamental site period at Centreport, Wellington, using surface‐wave methods: Implications for local seismic site amplification. Bulletin of the Seismological Society of America, 108(3B), 1709–1721.
    [Google Scholar]
  72. Vantassel, J.P. (2020) jpvantassel/hvsrpy: latest (concept). Zenodo. http://doi.org/10.5281/zenodo.3666956
  73. Wald, D.J. and Allen, T.I. (2007) Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97, 1379–1395.
    [Google Scholar]
  74. Wald, D.J., Earle, P.S., Allen, T.I., Jaiswal, K., Porter, K. and Hearne, M. (2008) Development of the U.S. Geological Survey's PAGER system (prompt assessment of global earthquakes for response.). 14th World Conference on Earthquake Engineering, Beijing, China, Paper 10‐0008.
  75. Wald, D.J., Quitoriano, V., Heaton, T.H., Kanamori, H., Scrivner, C.W. and Worden, B.C. (1999) TriNet “ShakeMaps”: rapid generation of peak ground‐motion and intensity maps for earthquakes in southern California. Earthquake Spectra, 15, 537–556.
    [Google Scholar]
  76. Wathelet, M., Chatelainn, J.L., Cornou, C., Giulio, G.D., Guillier, B., Ohrnberger, M. and Savvaidis, A. (2020) Geopsy: a user‐friendly open‐source tool set for ambient vibration processing. Seismological Research Letter, 91(3), 1878–1889. https://doi.org/10.1785/0220190360
    [Google Scholar]
  77. Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F. and Tian, D. (2019) The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564. https://doi.org/10.1029/2019GC008515
    [Google Scholar]
  78. Wirth, E.A., Vidale, J.E., Frankel, A.D., Pratt, T.L., Marafi, N.A., Thompson, M. and Stephenson, W.J. (2019) Source‐dependent amplification of earthquake ground motions in deep sedimentary basins. Geophysical Research Letters, 46, 6443–6450. https://doi.org/10.1029/2019GL082474
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12186
Loading
/content/journals/10.1002/nsg.12186
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): H/V spectral ratio , imaging , inversion , shallow subsurface , Site effects and S‐wave
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error