1887
Volume 20, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Investigating the near‐surface structure of the Earth through geophysical methods is a crucial aspect in many areas of study in geotechnical engineering, environmental science and exploration. Among several geophysical methods, seismic‐based ones are widely used for characterizing near‐surface features that are distinguished by contrasts in elastic parameters. In this paper, we model 3D elastodynamic wave propagation and scattering using a method based on domain‐type integral representation with Born approximation. We calculate the scattered wavefield by considering the first‐order perturbations in density and Lamé parameter contrasts of scatterers. Contrasts in Lamé parameters can be useful for determining the material properties of subsurface structures in cases of weak contrasts in velocities accompanying considerable Lamé parameter variations. We examine the effects of each parameter contrast on a series of models involving a subsurface scatterer. We also compare the seismograms obtained from our method with those from a 3D finite‐difference wavefield modelling program, where we observe good agreement between the modelling results. Sensitivity of the wavefield to the perturbation in each model parameter is also examined by calculating and analysing the Fréchet derivatives. In general, the method discussed here can provide a solid foundation for prospective imaging studies involving density and Lamé parameters simultaneously.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12199
2022-05-20
2022-06-27
Loading full text...

Full text loading...

References

  1. Aki, K. and Richards, P.G. (2002) Quantitative Seismology, 2nd edition.California, CA: University Science Books.
    [Google Scholar]
  2. Alfouzan, F., Zhou, B., Bakkour, K. and Alyousif, M. (2016) Detecting near‐surface buried targets by a geophysical cluster of electromagnetic, magnetic and resistivity scanners. Journal of Applied Geophysics, 134, 55–63. https://doi.org/10.1016/j.jappgeo.2016.08.006
    [Google Scholar]
  3. Allam, A.A., Tape, C. and Ben‐Zion, Y. (2015) Finite‐frequency sensitivity kernels of seismic waves to fault zone structures. Geophysical Journal International, 203(3), 2032–2048. https://doi.org/10.1093/gji/ggv413
    [Google Scholar]
  4. Almuhaidib, A.M. and Nafi Toksöz, M. (2014) Numerical modeling of elastic‐wave scattering by near‐surface heterogeneities. Geophysics, 79(4), T199–T217. https://doi.org/10.1190/GEO2013‐0208.1
    [Google Scholar]
  5. Almuhaidib, A.M. and Nafi Toksöz, M. (2015) Imaging of near‐surface heterogeneities by scattered elastic waves. Geophysics, 80(4), A83–A88. https://doi.org/10.1190/GEO2014‐0416.1
    [Google Scholar]
  6. Anjom, F.K., Teodor, D., Comina, C., Brossier, R., Virieux, J. and Socco, L.V. (2019) Full‐waveform matching of VP and VS models from surface waves. Geophysical Journal International, 218(3), 1873–1891. https://doi.org/10.1093/gji/ggz279
    [Google Scholar]
  7. Ba, X., Li, L., Wang, J., Zhang, W., Fang, Z., Sun, S., et al. (2020) Near‐surface site investigation and imaging of karst cave using comprehensive geophysical and laser scanning: a case study in Shandong, China. Environmental Earth Sciences, 79(12). https://doi.org/10.1007/s12665‐020‐09037‐9
    [Google Scholar]
  8. Bačić, M., Librić, L., Kaćunić, D.J. and Kovačević, M.S. (2020) The usefulness of seismic surveys for geotechnical engineering in karst: some practical examples. Geosciences, 10(10), 1–17. https://doi.org/10.3390/geosciences10100406
    [Google Scholar]
  9. Bao, X. and Shen, Y. (2018) Full‐waveform sensitivity kernels of component‐differential traveltimes and ZH amplitude ratios for velocity and density tomography. Journal of Geophysical Research: Solid Earth, 123(6), 4829–4840. https://doi.org/10.1029/2017JB015421
    [Google Scholar]
  10. Benjumea, B., Macau, A., Gabàs, A. and Figueras, S. (2016) Characterization of a complex near‐surface structure using well logging and passive seismic measurements. Solid Earth, 7(2), 685–701. https://doi.org/10.5194/se‐7‐685‐2016
    [Google Scholar]
  11. Bergamo, P. and Socco, L.V. (2016) P‐ and S‐wave velocity models of shallow dry sand formations from surface wave multimodal inversion. Geophysics, 81(4), R197–R209. https://doi.org/10.1190/GEO2015‐0542.1
    [Google Scholar]
  12. Bilik, Y., Haridim, M. and Bilik, D. (2018) Significant improvement of detection of underground rectilinear objects based on anisotropy measurements. Journal of Applied Geophysics, 154, 108–115. https://doi.org/10.1016/j.jappgeo.2018.05.002
    [Google Scholar]
  13. Blonk, B. (1995) Removal of scattered surface waves from seismic data. PhD thesis, Delft University of Technology, The Netherlands.
    [Google Scholar]
  14. Blonk, B. and Herman, G.C. (1994) Inverse scattering of surface waves: a new look at surface consistency. Geophysics, 59(6), 963–972. https://doi.org/10.1190/1.1443656
    [Google Scholar]
  15. Bohlen, T. (2002) Parallel 3‐D viscoelastic finite difference seismic modelling. Computers and Geosciences, 28(8), 887–899. https://doi.org/10.1016/S0098‐3004(02)00006‐7
    [Google Scholar]
  16. Borisov, D., Modrak, R., Gao, F. and Tromp, J. (2018) 3D elastic full‐waveform inversion of surface waves in the presence of irregular topography using an envelope‐based misfit function. Geophysics, 83(1), R1–R11. https://doi.org/10.1190/GEO2017‐0081.1
    [Google Scholar]
  17. Brodic, B., Malehmir, A., Svensson, M. and Jonsson, J. (2018) Feasibility of 3D random seismic arrays for subsurface characterizations in urban environments. 24th European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience Conference and Exhibition 2018. https://doi.org/10.3997/2214‐4609.201802502
  18. Butzer, S. (2015) 3D elastic time‐frequency full‐waveform inversion. PhD thesis, Karlsruhe Institute of Technology, Germany
    [Google Scholar]
  19. Campman, X. and Riyanti, C.D. (2007) Non‐linear inversion of scattered seismic surface waves. Geophysical Journal International, 171(3), 1118–1125. https://doi.org/10.1111/j.1365‐246X.2007.03557.x
    [Google Scholar]
  20. Chen, J., Zelt, C.A. and Jaiswal, P. (2017) Detecting a known near‐surface target through application of frequency‐dependent traveltime tomography and full‐waveform inversion to P‐ and SH‐wave seismic refraction data. Geophysics, 82(1), R1–R17. https://doi.org/10.1190/GEO2016‐0085.1
    [Google Scholar]
  21. Colombo, D., McNeice, G., Rovetta, D., Sandoval‐Curiel, E., Turkoglu, E. and Sena, A. (2016) High‐resolution velocity modeling by seismic‐airborne TEM joint inversion: a new perspective for near‐surface characterization. Leading Edge, 35(11), 977–985. https://doi.org/10.1190/tle35110977.1
    [Google Scholar]
  22. Culshaw, M.G. and Waltham, A.C. (1987) Natural and artificial cavities as ground engineering hazards. Quarterly Journal of Engineering Geology, 20(2), 139–150. https://doi.org/10.1144/gsl.qjeg.1987.020.02.04
    [Google Scholar]
  23. Dahlen, F.A., Hung, S.H. and Nolet, G. (2000) Fréchet kernels for finite‐frequency traveltimes‐I. Theory. Geophysical Journal International, 141(1), 157–174. https://doi.org/10.1046/j.1365‐246X.2000.00070.x
    [Google Scholar]
  24. Dashwood, B., Gunn, D., Curioni, G., Inauen, C., Swift, R., Chapman, D., et al. (2020) Surface wave surveys for imaging ground property changes due to a leaking water pipe. Journal of Applied Geophysics, 174. https://doi.org/10.1016/j.jappgeo.2019.103923
    [Google Scholar]
  25. de Hoop, A.T. (1995) Handbook of Radiation and Scattering of Waves. London, UK:Academic Press.
    [Google Scholar]
  26. Ditzel, A. (2003) Train‐induced ground vibrations: Modeling and experiments. PhD thesis, Delft University of Technology, The Netherlands.
    [Google Scholar]
  27. Ditzel, A. and Herman, G.C. (2004) The influence of a rail embankment on the vibrations generated by moving trains. Journal of Sound and Vibration, 271, 937–957. https://doi.org/10.1016/S0022‐460X(03)00772‐7
    [Google Scholar]
  28. Dokter, E., Köhn, D., Wilken, D., De Nil, D. and Rabbel, W. (2017) Full waveform inversion of SH‐ and Love‐wave data in near‐surface prospecting. Geophysical Prospecting, 65, 216–236. https://doi.org/10.1111/1365‐2478.12549
    [Google Scholar]
  29. Dufour, J., Squires, J., Goodway, W.N., Edmunds, A. and Shook, I. (2002) Integrated geological and geophysical interpretation case study, and Lamé rock parameter extractions using AVO analysis on the Blackfoot 3C‐3D seismic data, Southern Alberta, Canada. Geophysics, 67(1), 27–37. https://doi.org/10.1190/1.1451319
    [Google Scholar]
  30. Edmonds, C.N. (2008) Karst and mining geohazards with particular reference to the Chalk outcrop, England. Quarterly Journal of Engineering Geology and Hydrogeology, 41(3), 261–278. https://doi.org/10.1144/1470‐9236/07‐206
    [Google Scholar]
  31. Fichtner, A. and Trampert, J. (2011) Hessian kernels of seismic data functionals based upon adjoint techniques. Geophysical Journal International, 185(2), 775–798. https://doi.org/10.1111/j.1365‐246X.2011.04966.x
    [Google Scholar]
  32. Filippi, C., Leparoux, D., Grandjean, G., Bitri, A. and Côte, P. (2019) New robust observables on Rayleigh waves affected by an underground cavity: from numerical to experimental modelling. Geophysical Journal International, 218(3), 1903–1918. https://doi.org/10.1093/gji/ggz256
    [Google Scholar]
  33. Fokkema, J.T. and van den Berg, P.M. (1993) Seismic Applications of Acoustic Reciprocity. Amsterdam, The Netherlands:Elsevier Science Publishers.
    [Google Scholar]
  34. Foti, S., Comina, C., Boiero, D. and Socco, L.V. (2009) Non‐uniqueness in surface‐wave inversion and consequences on seismic site response analyses. Soil Dynamics and Earthquake Engineering, 29(6), 982–993. https://doi.org/10.1016/j.soildyn.2008.11.004
    [Google Scholar]
  35. Gao, L., Pan, Y. and Bohlen, T. (2020) 2‐D multiparameter viscoelastic shallow‐seismic full‐waveform inversion: reconstruction tests and first field‐data application. Geophysical Journal International, 222(1), 560–571. https://doi.org/10.1093/gji/ggaa198
    [Google Scholar]
  36. Geldart, L.P. and Sheriff, R.E. (2004) Problems in Exploration Seismology and Their Solutions. Houston, TX: SEG Books. https://doi.org/10.1190/1.9781560801733
    [Google Scholar]
  37. Gelis, C., Leparoux, D., Virieux, J., Bitri, A., Operto, S. and Grandjean, G. (2005) Numerical modeling of surface waves over shallow cavities. Journal of Environmental and Engineering Geophysics, 10(2), 111–121. https://doi.org/10.2113/JEEG10.2.111
    [Google Scholar]
  38. Golalzadeh, A.R., Javaherian, A. and Nabi‐Bidhendi, M. (2008) Estimation of Lamé’s parameters from P‐waves in a VTI medium. Journal of Geophysics and Engineering, 5(1), 37–45. https://doi.org/10.1088/1742‐2132/5/1/004
    [Google Scholar]
  39. Goodway, B. (2001) AVO and Lamé constants for rock parameterization and fluid detection. CSEG Recorder, 26(6), 39–60.
    [Google Scholar]
  40. Groos, L., Schäfer, M., Forbriger, T. and Bohlen, T. (2017) Application of a complete workflow for 2D elastic full‐waveform inversion to recorded shallow‐seismic Rayleigh waves. Geophysics, 82(2), R109–R117. https://doi.org/10.1190/GEO2016‐0284.1
    [Google Scholar]
  41. Harmankaya, U. and Kaslilar, A. (2019) Imaging near surface scatterers by scattered surface waves – revamping an inverse scattering code. 25th European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience Conference and Exhibition 2019. https://doi.org/10.3997/2214‐4609.201902453
  42. Harmankaya, U., Kaslilar, A., Wapenaar, K. and Draganov, D. (2018) Locating scatterers while drilling using seismic noise due to tunnel boring machine. Journal of Applied Geophysics, 152, 86–99. https://doi.org/10.1016/j.jappgeo.2018.03.017
    [Google Scholar]
  43. Huang, X. (2020) Integral equation methods with multiple scattering and Gaussian beams in inhomogeneous background media for solving nonlinear inverse scattering problems. IEEE Transactions on Geoscience and Remote Sensing, 59(6), 5345–5351. https://doi.org/10.1109/tgrs.2020.3019221
    [Google Scholar]
  44. Hung, S.H., Dahlen, F.A. and Nolet, G. (2000) Fréchet kernels for finite‐frequency traveltimes–II. Examples. Geophysical Journal International, 141(1), 175–203. https://doi.org/10.1046/j.1365‐246X.2000.00072.x
    [Google Scholar]
  45. Huntley, D., Bobrowsky, P., Hendry, M., Macciotta, R. and Best, M. (2019) Multi‐technique geophysical investigation of a very slow‐moving landslide near Ashcroft, British Columbia, Canada. Journal of Environmental and Engineering Geophysics, 24(1), 87–110. https://doi.org/10.2113/JEEG24.1.87
    [Google Scholar]
  46. Jetschny, S., Bohlen, T. and Kurzmann, A. (2011) Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves. Geophysical Prospecting, 59(5), 934–946. https://doi.org/10.1111/j.1365‐2478.2011.00958.x
    [Google Scholar]
  47. Ji, S., Sun, S., Wang, Q. and Marcotte, D. (2010) Lamé parameters of common rocks in the Earth's crust and upper mantle. Journal of Geophysical Research: Solid Earth, 115(6). https://doi.org/10.1029/2009JB007134
    [Google Scholar]
  48. Kaslilar, A. (2007) Inverse scattering of surface waves: imaging of near‐surface heterogeneities. Geophysical Journal International, 171(1), 352–367. https://doi.org/10.1111/j.1365‐246X.2007.03524.x
    [Google Scholar]
  49. Kaslilar, A., Harmankaya, U., Wapenaar, K. and Draganov, D. (2013) Estimating the location of a tunnel using correlation and inversion of Rayleigh wave scattering. Geophysical Research Letters, 40(23), 6084–6088. https://doi.org/10.1002/2013GL058462
    [Google Scholar]
  50. Kaslilar, A. and Herman, G.C. (2007) Imaging by scattered surface waves – preliminary results from seismic field data. Near Surface 2007 – 13th European Meeting of Environmental and Engineering Geophysics. https://doi.org/10.3997/2214‐4609.20146595
  51. Kennett, B.L.N. (1983) Seismic Wave Propagation in Stratified Media. Cambridge, UK:Cambridge University Press.
    [Google Scholar]
  52. Kennett, B.L.N. (2001) The Seismic Wavefield. Volume 1: Introduction and Theoretical Development. Cambridge, UK:Cambridge University Press.
    [Google Scholar]
  53. Khomenko, V.P. (2008) Forecast of a collapse location: New approach. Quarterly Journal of Engineering Geology and Hydrogeology, 41(3), 393–401. https://doi.org/10.1144/1470‐9236/07‐219
    [Google Scholar]
  54. Konstantaki, L.A., Carpentier, S., Garofalo, F., Bergamo, P. and Socco, L.V. (2013) Determining hydrological and soil mechanical parameters from multichannel surface‐wave analysis across the Alpine Fault at Inchbonnie, New Zealand. Near Surface Geophysics, 11(4), 435–448. https://doi.org/10.3997/1873‐0604.2013019
    [Google Scholar]
  55. LePage, K.D. and Schmidt, H. (2003) Spectral integral representations of monostatic backscattering from three‐dimensional distributions of sediment volume inhomogeneities. The Journal of the Acoustical Society of America, 113(2), 789–799. https://doi.org/10.1121/1.1528625
    [Google Scholar]
  56. Li, Y., Downton, J. and Goodway, B. (2003) Recent applications of AVO to carbonate reservoirs in the Western Canadian Sedimentary Basin. Leading Edge, 22(7), 670–674. https://doi.org/10.1190/1.1599694
    [Google Scholar]
  57. Linares, R., Roqué, C., Gutiérrez, F., Zarroca, M., Carbonel, D., Bach, J. and Fabregat, I. (2017) The impact of droughts and climate change on sinkhole occurrence. A case study from the evaporite karst of the Fluvia Valley, NE Spain. Science of the Total Environment, 579, 345–358. https://doi.org/10.1016/j.scitotenv.2016.11.091
    [Google Scholar]
  58. Liu, Y., Dong, L., Wang, Y., Zhu, J. and Ma, Z. (2009) Sensitivity kernels for seismic Fresnel volume tomography. Geophysics, 74(5). https://doi.org/10.1190/1.3169600
    [Google Scholar]
  59. Malehmir, A., Socco, L.V., Bastani, M., Krawczyk, C.M., Pfaffhuber, A.A., Miller, R.D., et al. (2016) Near‐surface geophysical characterization of areas prone to natural hazards: a review of the current and perspective on the future. Advances in Geophysics, 57, 51–146. https://doi.org/10.1016/bs.agph.2016.08.001
    [Google Scholar]
  60. Malovichko, M., Khokhlov, N., Yavich, N. and Zhdanov, M. (2017) Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full‐waveform inversion. Journal of Computational Physics, 346, 318–339. https://doi.org/10.1016/j.jcp.2017.06.021
    [Google Scholar]
  61. Mandal, A., Basantaray, A.K., Chandroth, A. and Mishra, U. (2019) Integrated geophysical investigation to map shallow surface alteration/fracture zones of Atri and Tarabalo hot springs, Odisha, India. Geothermics, 77, 24–33. https://doi.org/10.1016/j.geothermics.2018.08.007
    [Google Scholar]
  62. Maries, G., Malehmir, A., Bäckström, E., Schön, M. and Marsden, P. (2017) Downhole physical property logging for iron‐oxide exploration, rock quality, and mining: an example from central Sweden. Ore Geology Reviews, 90, 1–13. https://doi.org/10.1016/j.oregeorev.2017.10.012,
    [Google Scholar]
  63. Mei, C.C., Si, B.I. and Cai, D. (1984) Scattering of simple harmonic waves by a circular cavity in a fluid‐infiltrated poro‐elastic medium. Wave Motion, 6(3), 265–278. https://doi.org/10.1016/0165‐2125(84)90030‐1
    [Google Scholar]
  64. Meng, Y. and Jia, L. (2018) Global warming causes sinkhole collapse – Case study in Florida, USA. Natural Hazards and Earth System Sciences Discussions, 1–8. https://doi.org/10.5194/nhess‐2018‐18
    [Google Scholar]
  65. Minato, S., Wapenaar, K. and Ghose, R. (2020) Elastic least‐squares migration for quantitative reflection imaging of fracture compliances. Geophysics, 85(6), S327–S342. https://doi.org/10.1190/geo2019‐0703.1
    [Google Scholar]
  66. Mohamed, A.M.E., El‐Hussain, I., Deif, A., Araffa, S.A.S., Mansour, K. and Al‐Rawas, G. (2019) Integrated ground penetrating radar, electrical resistivity tomography and multichannel analysis of surface waves for detecting near‐surface caverns at Duqm area, Sultanate of Oman. Near Surface Geophysics, 17(4), 379–401. https://doi.org/10.1002/nsg.12054
    [Google Scholar]
  67. Mossessian, T.K. and Dravinski, M. (1989) Scattering of elastic waves by three‐dimensional surface topographies. Wave Motion, 11(6), 579–592. https://doi.org/10.1016/0165‐2125(89)90028‐0
    [Google Scholar]
  68. Mouzakiotis, E., Karastathis, V., Voulgaris, N. and Papadimitriou, P. (2020) Site amplification assessment in the East Corinth Gulf using 3D finite‐difference modeling and local geophysical data. Pure and Applied Geophysics, 177(8), 3871–3889. https://doi.org/10.1007/s00024‐020‐02421‐3
    [Google Scholar]
  69. Pan, Y., Gao, L. and Bohlen, T. (2019) High‐resolution characterization of near‐surface structures by surface‐wave inversions: from dispersion curve to full waveform. Surveys in Geophysics, 40(2), 167–195. https://doi.org/10.1007/s10712‐019‐09508‐0
    [Google Scholar]
  70. Pérez Solano, A. C., Donno, D. and Chauris, H. (2016) Finite‐difference strategy for elastic wave modelling on curved staggered grids. Computational Geosciences, 20(1), 245–264. https://doi.org/10.1007/s10596‐016‐9561‐8
    [Google Scholar]
  71. Riyanti, C.D. and Herman, G.C. (2005) Three‐dimensional elastic scattering by near‐surface heterogeneities. Geophysical Journal International, 160(2), 609–620. https://doi.org/10.1111/j.1365‐246X.2005.02492.x
    [Google Scholar]
  72. Salas‐Romero, S., Malehmir, A., Snowball, I. and Dessirier, B. (2019) Subsurface characterization of a quick‐clay vulnerable area using near‐surface geophysics and hydrological modelling. Solid Earth, 10(5), 1685–1705. https://doi.org/10.5194/se‐10‐1685‐2019
    [Google Scholar]
  73. Samyn, K., Bitri, A. and Grandjean, G. (2013) Imaging a near‐surface feature using cross‐correlation analysis of multi‐channel surface wave data. Near Surface Geophysics, 11(1), 1–10. https://doi.org/10.3997/1873‐0604.2012007
    [Google Scholar]
  74. Schuster, G.T. (2017) Seismic Inversion. Society of Exploration Geophysicists.
    [Google Scholar]
  75. Shao, G., Tsoflias, G.P. and Li, C.J. (2016) Detection of near‐surface cavities by generalized S‐transform of Rayleigh waves. Journal of Applied Geophysics, 129, 53–65. https://doi.org/10.1016/j.jappgeo.2016.03.041
    [Google Scholar]
  76. Shen, Y., Zhang, Z. and Zhao, L. (2008) Component‐dependent Fréchet sensitivity kernels and utility of three‐component seismic records. Bulletin of the Seismological Society of America, 98(5), 2517–2525. https://doi.org/10.1785/0120070283
    [Google Scholar]
  77. Snieder, R. (2002) Scattering of surface waves. In: Pike, R. and Sabatier, P. (Eds.) Scattering and Inverse Scattering in Pure and Applied Science. San Diego:Academic Press, pp. 562–577.
    [Google Scholar]
  78. Socco, L.V. and Strobbia, C. (2004) Surface‐wave method for near‐surface characterization: a tutorial. Near Surface Geophysics, 2(4), 165–185. https://doi.org/10.3997/1873‐0604.2004015
    [Google Scholar]
  79. Socco, L.V., Foti, S. and Boiero, D. (2010) Surface‐wave analysis for building near‐surface velocity models – established approaches and new perspectives. Geophysics, 75(5). https://doi.org/10.1190/1.3479491
    [Google Scholar]
  80. Solazzi, S.G., Bodet, L., Holliger, K. and Jougnot, D. (2021) Surface‐wave dispersion in partially saturated soils: the role of capillary forces. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022074
    [Google Scholar]
  81. Spetzler, J. and Snieder, R. (2004) The Fresnel volume and transmitted waves. Geophysics, 69(3), 653–663. https://doi.org/10.1190/1.1759451
    [Google Scholar]
  82. Tarantola, A. (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 51(10), 1893–1903. https://doi.org/10.1190/1.1442046
    [Google Scholar]
  83. Teodor, D., Comina, C., Anjom, F.K., Brossier, R., Socco, L.V. and Virieux, J. (2021) Challenges in shallow target reconstruction by 3D elastic full‐waveform inversion – which initial model?Geophysics, 86(4), 1–14. https://doi.org/10.1190/GEO2019‐0523.1
    [Google Scholar]
  84. Tran, K.T., McVay, M., Faraone, M. and Horhota, D. (2013) Sinkhole detection using 2D full seismic waveform tomography. Geophysics, 78(5). https://doi.org/10.1190/GEO2013‐0063.1
    [Google Scholar]
  85. Tremblay, S.P., Karray, M., Chekired, M., Bessette, C. and Jinga, L. (2017) Inspection of the lids of shallowly buried concrete structures based on the propagation of surface waves. Journal of Applied Geophysics, 136, 19–34. https://doi.org/10.1016/j.jappgeo.2016.10.020
    [Google Scholar]
  86. Tremblay, S.P., Karray, M., Chekired, M., Bessette, C. and Jinga, L. (2018) Inspection of the lids of shallowly buried concrete structures based on the propagation of surface waves – Part II. Journal of Applied Geophysics, 148, 55–69. https://doi.org/10.1016/j.jappgeo.2017.11.008
    [Google Scholar]
  87. Tromp, J., Tape, C. and Liu, Q. (2005) Seismic tomography, adjoint methods, time reversal and banana‐doughnut kernels. Geophysical Journal International, 160(1), 195–216. https://doi.org/10.1111/j.1365‐246X.2004.02453.x
    [Google Scholar]
  88. Virieux, J. and Operto, S. (2009) An overview of full‐waveform inversion in exploration geophysics. Geophysics, 74(6). https://doi.org/10.1190/1.3238367
    [Google Scholar]
  89. Wang, J. and Hong, L. (2020) Stable optimization of finite‐difference operators for seismic wave modeling. Studia Geophysica et Geodaetica, 64(4), 452–464. https://doi.org/10.1007/s11200‐019‐0487‐1
    [Google Scholar]
  90. Woodcock, N.H., Omma, J.E. and Dickson, J.A.D. (2006) Chaotic breccia along the Dent Fault, NW England: implosion or collapse of a fault void?Journal of the Geological Society, 163(3), 431–446. https://doi.org/10.1144/0016‐764905‐067
    [Google Scholar]
  91. Wu, R.S. and Aki, K. (1985a) Elastic wave scattering by a random medium and the small‐scale inhomogeneities in the lithosphere. Journal of Geophysical Research, 90(B12), 10261–10273. https://doi.org/10.1029/jb090ib12p10261
    [Google Scholar]
  92. Wu, R. and Aki, K. (1985b) Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics, 50(4), 582–595. https://doi.org/10.1190/1.1441934
    [Google Scholar]
  93. Xia, J. (2014) Estimation of near‐surface shear‐wave velocities and quality factors using multichannel analysis of surface‐wave methods. Journal of Applied Geophysics, 103, 140–151. https://doi.org/10.1016/j.jappgeo.2014.01.016
    [Google Scholar]
  94. Xia, J., Miller, R.D. and Park, C.B. (1999) Estimation of near‐surface shear‐wave velocity by inversion of Rayleigh waves. Geophysics, 64(3), 691–700. https://doi.org/10.1190/1.1444578
    [Google Scholar]
  95. Xia, J., Nyquist, J.E., Xu, Y., Roth, M.J.S. and Miller, R.D. (2007) Feasibility of detecting near‐surface feature with Rayleigh‐wave diffraction. Journal of Applied Geophysics, 62(3), 244–253. https://doi.org/10.1016/j.jappgeo.2006.12.002
    [Google Scholar]
  96. Yang, J. and Abubakar, A. (2012) A contrast‐source integral‐equation approach for three‐dimensional modeling of elastic wave problems. Wave Motion, 49(7), 638–658. https://doi.org/10.1016/j.wavemoti.2012.04.003
    [Google Scholar]
  97. Yoshizawa, K. and Kennett, B.L.N. (2005) Sensitivity kernels for finite‐frequency surface waves. Geophysical Journal International, 162(3), 910–926. https://doi.org/10.1111/j.1365‐246X.2005.02707.x
    [Google Scholar]
  98. Yu, H., Huang, Y. and Guo, B. (2016) Near‐surface fault detection by migrating back‐scattered surface waves with and without velocity profiles. Journal of Applied Geophysics, 130, 81–90. https://doi.org/10.1016/j.jappgeo.2016.04.013
    [Google Scholar]
  99. Zhao, L. and Jordan, T.H. (2006) Structural sensitivities of finite‐frequency seismic waves: a full‐wave approach. Geophysical Journal International, 165(3), 981–990. https://doi.org/10.1111/j.1365‐246X.2006.02993.x
    [Google Scholar]
  100. Zhou, B. and Greenhalgh, S. (2008) Velocity sensitivity of seismic body waves to the anisotropic parameters of a TTI medium. Journal of Geophysics and Engineering, 5(3), 245–255. https://doi.org/10.1088/1742‐2132/5/3/001
    [Google Scholar]
  101. Zhou, Y., Dahlen, F.A. and Nolet, G. (2004) Three‐dimensional sensitivity kernels for surface wave observables. Geophysical Journal International, 158(1), 142–168. https://doi.org/10.1111/j.1365‐246X.2004.02324.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12199
Loading
/content/journals/10.1002/nsg.12199
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Modelling; Near‐surface; Seismic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error