1887
Volume 20, Issue 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

ABSTRACT

Submarine karstic environments are complex and challenging to study. Seismic investigations usually have difficulty getting geological information because of a lack of penetration due to the high reflectivity of the calcareous substratum. To circumvent this problem, we studied how to combine marine electrical resistivity tomography (MERT) with geotechnical data to investigate the porosity structure from the geotechnical to the geophysical scale. We applied the technique to the submarine karstic plateau of Banc de Guérande (Saint‐Nazaire, France), which is mainly composed of hard calcarenite and sandy pockets. We obtained sections of two‐dimensional resistivity models from the MERT data inversion. We used existing geotechnical data on extracted cores at several boreholes close to the MERT profiles using a multi‐sensor core logging (MSCL) bench. We used porosity proxies derived from Archie's law and porosity data from the MSCL inferred from gamma density measurements on the core to combine the data of very different scales (metre for MERT and centimetre for MSCL). The comparison between measurements showed a good similarity between MERT and borehole MSCL data at depths greater than ∼10 m below the seafloor. A larger difference was observed close to the seabed, where the MERT porosity was higher than the MSCL porosity. The extraction of water‐saturated cores and the numerous core fractures could explain this difference near the surface. The results were analysed with respect to the scale difference between geophysical and geotechnical data. The conclusions suggested that the difference between MERT and MSCL porosities could be testified from the local heterogeneity of the soil and indicated whether the surrounding substratum was more porous (and thus fractured or dissolved) than the core or vice versa. The study highlighted the necessity of an excellent collocation of the data to retrieve reliable information from the comparison between geophysical and geotechnical data.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12217
2022-07-13
2022-08-18
Loading full text...

Full text loading...

/deliver/fulltext/nsg/20/4/nsg12217.html?itemId=/content/journals/10.1002/nsg.12217&mimeType=html&fmt=ahah

References

  1. Annels, A.E. & Dominy, S.C, (2003) Core recovery and quality: Important factors in mineral resource estimation. Applied Earth Science, 112(3), 30512. https://doi.org/10.1179/037174503225011306
    [Google Scholar]
  2. Archie, G.E, (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining and Petroleum Engineers, 146(1), 5462. https://doi.org/10.2118/942054‐G
    [Google Scholar]
  3. Bazin, S. & Pfaffhuber, A.A, (2013) Mapping of quick clay by electrical resistivity tomography under structural constraint. Journal of Applied Geophysics, 98, 280–287. https://doi.org/10.1016/j.jappgeo.2013.09.002
    [Google Scholar]
  4. Blanc, J.‐J, (2010) Explorations sous‐marines: Les karsts et les surfaces d’érosion au large de la Provence occidentale. Karstologia, 55(1), 2738. https://doi.org/10.3406/karst.2010.2668
    [Google Scholar]
  5. Bonem, R.M, (1988) Effects of submarine karst development on reef succession. Proceedings of the Sixth International Coral Reef Symposium, Australia, 3, 419–423.
    [Google Scholar]
  6. Brunović, D., Miko, S., Hasan, O., Papatheodorou, G., Ilijanić, N., Miserocchi, S.et al. (2020) Late Pleistocene and Holocene paleoenvironmental reconstruction of a drowned karst isolation basin (Lošinj Channel, NE Adriatic Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 544, 109587. https://doi.org/10.1016/j.palaeo.2020.109587
    [Google Scholar]
  7. Camoin, G.F., Montaggioni, L.F. & Braithwaite, C.J.R, (2004) Late glacial to post glacial sea levels in the Western Indian Ocean. Marine Geology, 206(14), 119146. https://doi.org/10.1016/j.margeo.2004.02.003
    [Google Scholar]
  8. Carrière, S.D., Chalikakis, K., Sénéchal, G., Danquigny, C. & Emblanch, C. (2013) Combining electrical resistivity tomography and ground penetrating radar to study the geological structuring of karst unsaturated zones. Journal of Applied Geophysics, 94, 31–41. https://doi.org/10.1016/j.jappgeo.2013.03.014
    [Google Scholar]
  9. Chalikakis, K., Plagnes, V., Guerin, R., Valois, R. & Bosch, F.P, (2011) Contribution of geophysical methods to karst‐system exploration: an overview. Hydrogeology Journal, 19(6), 116980. https://doi.org/10.1007/s10040‐011‐0746‐x
    [Google Scholar]
  10. Courrèges, M, (1997) The covered karst of the Medoc peninsula. Crypto‐alteration, dissolution, submarine karst and Quaternary evolution. Quaternaire, 8(2‐3), 289304. https://doi.org/10.3406/quate.1997.1581
    [Google Scholar]
  11. Dahlin, T. & Loke, M.H, (2018) Underwater ERT surveying in water with resistivity layering with example of application to site investigation for a rock tunnel in central Stockholm. Near Surface Geophysics, 16(3), 230–237. https://doi.org/10.3997/1873‐0604.2018007
    [Google Scholar]
  12. EDF‐Re , (2016) Saint Nazaire Structural Model – Saint‐Nazaire site – Parc du Banc de Guérande_rev2. Internal document of EDF‐Renouvelables.
  13. Flamme, J., Tarits, P., Fabre, M., Jouet, G., Ehrhold, A., Lepot, A. & Marsset, B, (2020) Characterization of shallow gas in coastal environment using jointly marine ERT and UHR seismic Imaging. In NSG2020 4th Applied Shallow Marine Geophysics Conference, 2020(1), 1–4. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214‐4609.202020046
    [Google Scholar]
  14. Franklin, J.A, (1979) Suggested methods for determining water content, porosity, density, absorption, and related properties and swelling and slake‐durability index properties. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 141156.
    [Google Scholar]
  15. Fugro , (2014a) Factual Report Offshore Wind farm Soil Investigation – Shallow Survey – Saint‐Nazaire site – Parc du Banc de Guérande. Paris: Fugro GeoConsulting SAS.
    [Google Scholar]
  16. Fugro , (2014b) Factual Report Offshore Wind farm Soil Investigation – Deep Survey – Saint‐Nazaire Site – Parc du Banc de Guérande_rev2. Paris: Fugro GeoConsulting SAS.
    [Google Scholar]
  17. Fugro , (2015a) Seismic Refraction and MASW Survey, GEO2 Cable Geotechnical Survey, Offshore Wind farm Project – Saint‐Nazaire Site – Parc du Banc de Guérande_rev1. Paris: Fugro GeoConsulting SAS.
    [Google Scholar]
  18. Fugro , (2015b) Final Factual Report ‐ GEO2 Foundations – Saint‐Nazaire Offshore France. Paris: Fugro GeoConsulting SAS.
    [Google Scholar]
  19. Fujita, K., Omori, A., Yokoyama, Y., Sakai, S. & Iryu, Y, (2010) Sea‐level rise during Termination II inferred from large benthic foraminifers: IODP Expedition 310, Tahiti sea level. Marine Geology, 271(12), 14955. https://doi.org/10.1016/j.margeo.2010.01.019
    [Google Scholar]
  20. Geotek , (2015) Multi‐Sensor Core Logging (MSCL) Data Report. Saint‐Nazaire Windfarm. EDF‐Renouvelables.
    [Google Scholar]
  21. Guilcher, A, (1958) Coastal corrosion forms in limestones around the Bay of Biscay. Scottish Geographical Magazine, 74(3), 13749. https://doi.org/10.1080/00369225808735720
    [Google Scholar]
  22. Jackson, P.D.J., Lovell, M.A., Roberts, J.A., Schulheiss, P.J., Gunn, D., Flint, R.C.et al. (2006) Rapid non‐contacting resistivity logging of core. Rothwell, R.G. In New Techniques in Sediment Core Analysis, Geological Society London, Special Publication267. Geological Society London, pp. 209–2017. https://doi.org/10.1144/GSL.SP.2006.267.01.15
    [Google Scholar]
  23. Kan, H., Urata, K., Nagao, M., Hori, N., Fujita, K., Yokoyama, Y.et al. (2015) Submerged karst landforms observed by multibeam bathymetric survey in Nagura Bay, Ishigaki Island, southwestern Japan. Geomorphology, 229, 11224. https://doi.org/10.1016/j.geomorph.2014.07.032
    [Google Scholar]
  24. Lee, M.W. & Collett, T.S, (2006) A method of shaly sand correction for estimating gas hydrate saturations using downhole electrical resistivity log data. Scientific investigations Report. U.S. Department of the Interior, US Geological Survey, 5121. https://doi.org/10.3133/sir20065121
    [Google Scholar]
  25. Loke, M.H, (2004) Tutorial: 2‐D and 3‐D electrical imaging surveys. https://www.researchgate.net/publication/264739285_Tutorial_2‐D_and_3‐D_Electrical_Imaging_Surveys
  26. Loke, M.H, (2016) RES2DINV version 6.1. Geoelectrical Imaging 2D and 3D. Instruction Manual. Geotomo Software.
  27. Miccadei, E., Mascioli, F., Orru, P., Piacentini, T. & Puliga, G, (2011) Late Quaternary paleolandscape of submerged inner continental shelf areas of Tremiti islands archipelago (northern Puglia). Geografia Fisica e Dinamica Quaternaria, 34(2), 223234. https://doi.org/10.4461/GFDQ.2011.34.20
    [Google Scholar]
  28. Muhammad, F., Samgyu, P., Young, S.S., Ho Kim, J., Mohammad, T. & Adepelumi, A.A, (2012) Subsurface cavity detection in a karst environment using electrical resistivity (ER): a case study from Yongweol‐ri, South Korea. Earth Sciences Research Journal, 16(1), 75–82.
    [Google Scholar]
  29. Nyquist, J.E., Peake, J.S. & Roth, M.J, (2007) Comparison of an optimized resistivity array with dipole–dipole soundings in karst terrain. Geophysics, 72(4), F139–F144. https://doi.org/10.1190/1.2732994
    [Google Scholar]
  30. O'Connell, Y., Daly, E., Henry, T. & Brown, C, (2018) Terrestrial and marine electrical resistivity to identify groundwater pathways in coastal karst aquifers. Near Surface Geophysics, 16(2), 164–175. https://doi.org/10.3997/1873‐0604.2017062
    [Google Scholar]
  31. Roy, A. & Apparao, A, (1971) Depth of investigation in direct current methods. Geophysics, 36(5), 943–959. https://doi.org/10.1190/1.1440226
    [Google Scholar]
  32. Ronczka, M., Hellman, K., Günther, T., Wisén, R. & Dahlin, T, (2017) Electric resistivity and seismic refraction tomography: A challenging joint underwater survey at Äspö Hard Rock Laboratory. Solid Earth, 8(3), 671–682. https://doi.org/10.5194/se‐8‐671‐2017
    [Google Scholar]
  33. Rucker, D.F. & Noonan, G.E, (2013) Using marine resistivity to map geotechnical properties: A case study in support of dredging the Panama Canal. Near Surface Geophysics, 11(6), 625–638. https://doi.org/10.3997/1873‐0604.2012017
    [Google Scholar]
  34. Sharma, S. & Verma, G.K, (2015) Inversion of electrical resistivity data: A review. International Journal of Computer and Systems Engineering, 9(4), 400406. https://doi.org/10.5281/zenodo.1106169
    [Google Scholar]
  35. Surić, M, (2002) Submarine karst of Croatia‐evidence of former lower sea levels. Acta Carsologica, 31(3), 89–98. https://doi.org/10.3986/ac.v31i3.381
    [Google Scholar]
  36. Surić, M, (2005) Submerged karst–dead or alive? Examples from the Eastern Adriatic coast (Croatia). Geoadria, 10(1), 519. https://doi.org/10.15291/geoadria.71
    [Google Scholar]
  37. Tarits, P., D'Eu, J.‐F., Balem, K., Hautot, S., Prevot, J. & Gaspari, F, (2012) Mapping seismically masked seabed structures with a new DC resistivity streamer. In Near Surface Geoscience 2012–18th European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists & Engineers, cp‐306‐00058. https://doi.org/10.3997/2214‐4609.20143374
    [Google Scholar]
  38. Tassis, G.A., Tsourlos, P.I. & Rønning, J.S, (2020) Detection and characterization of fracture zones in bedrock in marine environment: Possibilities and limitations. Near Surface Geophysics, 18(1), 91–103. https://doi.org/10.1002/nsg.12086
    [Google Scholar]
  39. Taviani, M., Angeletti, L., Campiani, E., Ceregato, A., Foglini, F., Maselli, V.et al. (2012) Drowned karst landscape offshore the Apulian margin (southern Adriatic Sea, Italy). Journal of Cave and Karst Studies, 74(2), 197212. https://doi.org/10.4311/2011JCKS0204
    [Google Scholar]
  40. Vanney, J.‐R, (1977) Geomorphology of the South‐Armorican continental margin, Bay of Biscay. Société d’édition d'enseignement supérieur.
  41. Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, L.K, (2000) Timing of the Last Glacial Maximum from observed sea‐level minima. Nature, 406(6797), 71316. https://doi.org/10.1038/35021035
    [Google Scholar]
  42. Zabidi, H. & De Freitas, M.H, (2011) Re‐evaluation of rock core logging for the prediction of preferred orientations of karst in the Kuala Lumpur Limestone Formation. Engineering Geology, 117(34), 15969. https://doi.org/10.1016/j.enggeo.2010.10.006
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12217
Loading
/content/journals/10.1002/nsg.12217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error