1887
Volume 20, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

Seismic investigation in marine gas‐bearing sediments often fails to get information below the acoustic mask created by free gas. To circumvent this problem, we combined collocated multichannel ultra‐high resolution seismic imaging, marine electrical resistivity tomography and core sampling to study the physical properties of gas‐bearing sediments in the Bay of Concarneau (France). We obtained sections of compression (P‐) wave velocity () from the multichannel processing and 2D resistivity models from the marine electrical resistivity tomography data inversion. We observed low resistivity (∼0.5 Ω·m) and low (∼1200 m/s) values where free gas was identified in the seismic data. We tested a joint processing workflow combining the 1D inversion of the marine electrical resistivity tomography data with the 2D P‐wave velocity through a structural coupling between resistivity and velocity. We obtained a series of 2D resistivity models fitting the data whilst in agreement with the data. The resulting models showed the continuity of the geological units below the acoustic gas fronts, which are associated with paleo‐valley sediment infilling. We were able to demonstrate relationships between resistivity and velocity differing from superficial to deeper sediments. We established these relationships at the geophysical scale and then compared the results to data from core sampling ( and porosity). We inferred the porosity distribution from the marine electrical resistivity tomography data. At the core locations, we observed a good agreement between this geophysical scale porosity and the core data both within and outside the gas‐bearing sediments. This agreement demonstrated that resistivity could be used as a proxy for porosity where no was available below gas caps. In these regions, the observed low resistivity showed a high porosity (60%–70%) down to about 10–20 m in depth, in contrast with the surrounding medium that has a porosity of less than 55%. These results support the hypothesis that failures inside the paleo‐valley sediment could control the gas migration.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12230
2022-09-29
2022-11-28
Loading full text...

Full text loading...

References

  1. Algar, C.K., Boudreau, B.P. & Barry, M.A. (2011) Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. Journal of Geophysical Research: Solid Earth, 116(B4), https://doi.org/10.1029/2010JB008133.
    [Google Scholar]
  2. Anderson, R.S. (1974) Statistical correlation of physical properties and sound velocity in sediments. In Physics of sound in marine sediments. Boston, MA: Springer, pp. 481–518.
    [Google Scholar]
  3. Anderson, A.L. & Hampton, L.D. (1980) Acoustics of gas‐bearing sediments I. Background. The Journal of the Acoustical Society of America, 67(6), 1865–1889.
    [Google Scholar]
  4. Archie, G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining Metallurgical and Petroleum Engineers, 146(1), 54–62.
    [Google Scholar]
  5. Baltzer, A., Ehrhold, A., Rigolet, C., Souron, A., Cordier, C., Clouet, H. & Dubois, S.F. (2014) Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders. Geo‐Marine Letters, 34(2–3), 215–230.
    [Google Scholar]
  6. Baltzer, A., Reynaud, M., Ehrhold, A., Fournier, J., Cordier, C. & Clouet, H. (2017) [Space‐time evolution of a large field of pockmarks in the Bay of Concarneau (NW Brittany)] Évolution spatio‐temporelle d'un champ de pockmarks dans la Baie de Concarneau (Nord‐Ouest de la Bretagne). Bulletin de la Société géologique de France, 188(4), 1–34.
    [Google Scholar]
  7. Boudreau, B.P., Algar, C., Johnson, B.D., Croudace, I., Reed, A., Furukawa, Y.et al. (2005) Bubble growth and rise in soft sediments. Geology, 33(6), 517–520.
    [Google Scholar]
  8. Constable, S., Kannberg, P.K. & Weitemeyer, K. (2016) Vulcan: a deep‐towed CSEM receiver. Geochemistry, Geophysics, Geosystems, 17(3), 1042–1064.
    [Google Scholar]
  9. Das, B.M. & Sivakugan, N. (2016) Fundamentals of geotechnical engineering. Boston, MA: Cengage Learning.
    [Google Scholar]
  10. Delanoë, Y. & Pinot, J. (1977) Littoraux et vallées holocènes submergés en Baie de Concarneau (Bretagne méridionale). Quaternaire, 14(3), 27–38.
    [Google Scholar]
  11. Deming, D. (2004) Can a single bubble sink a ship?Journal of Scientific Exploration, 18(2), 307–312.
    [Google Scholar]
  12. Du, Z. & Key, K. (2018) Case study: North Sea heavy oil reservoir characterization from integrated analysis of towed‐streamer EM and dual‐sensor seismic data. The Leading Edge, 37(8), 608–615.
    [Google Scholar]
  13. Ecker, C., Dvorkin, J. & Nur, A.M. (2000) Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics, 65(2), 565–573.
    [Google Scholar]
  14. Ehrhold, A., Hamon, D. & Guillaumont, B. (2006) The REBENT monitoring network, a spatially integrated, acoustic approach to surveying nearshore macrobenthic habitats: application to the Bay of Concarneau (South Brittany, France). ICES Journal of Marine Science, 63(9), 1604–1615.
    [Google Scholar]
  15. Ehrhold, A. & Riboulot, V. (2018) SYPOCO Campaign cruise. RV Thalia. https://doi.org/10.17600/18000420
  16. Flamme, J., Fabre, M., Tarits, P., Marsset, B. & Lepot, A. (2019) Combining marine electromagnetic and high‐resolution seismic imaging: application to shallow gassy environment. In SAGEEP 2019 (Vol. 2019, No. 1, pp. 1–4). European Association of Geoscientists & Engineers.
    [Google Scholar]
  17. Fleischer, P., Orsi, T., Richardson, M. & Anderson, A. (2001) Distribution of free gas in marine sediments: a global overview. Geo‐Marine Letters, 21(2), 103–122.
    [Google Scholar]
  18. Garcia, X., Monteys, X., Evans, R.L. & Szpak, M. (2014) Constraints on a shallow offshore gas environment determined by a multidisciplinary geophysical approach: the Malin Sea, NW Ireland. Geochemistry, Geophysics, Geosystems, 15(4), 867–885.
    [Google Scholar]
  19. Gardner, T.N. (2000) An acoustic study of soils that model seabed sediments containing gas bubbles. The Journal of the Acoustical Society of America, 107(1), 163–176.
    [Google Scholar]
  20. Goswami, B.K., Weitemeyer, K.A., Minshull, T.A., Sinha, M.C., Westbrook, G.K. & Marín‐Moreno, H. (2016) Resistivity image beneath an area of active methane seeps in the west Svalbard continental slope. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(2), 1286–1302.
    [Google Scholar]
  21. Hamilton, E.L. (1971) Prediction of in situ acoustic and elastic properties of marine sediments. Geophysics, 36(2), 266–284.
    [Google Scholar]
  22. Hamilton, E.L. & Bachman, R.T. (1982) Sound velocity and related properties of marine sediments. The Journal of the Acoustical Society of America, 72(6), 1891–1904.
    [Google Scholar]
  23. Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A. & Lizarralde, D. (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, 273(5283), 1840–1843.
    [Google Scholar]
  24. Hou, Z., Chen, Z., Wang, J., Zheng, X., Yan, W., Tian, Y. & Luo, Y. (2018) Acoustic impedance properties of seafloor sediments off the coast of Southeastern Hainan, South China Sea. Journal of Asian Earth Sciences, 154, 1–7.
    [Google Scholar]
  25. Hovland, M. & Judd, A.G. (1992) The global production of methane from shallow submarine sources. Continental Shelf Research, 12(10), 1231–1238.
    [Google Scholar]
  26. Jouet, G., Ehrhold, A., Riboulot, V., Belleney, D., Sommer‐Delfolie, S., Baltzer, A.et al. (2019) Late Holocene sedimentation in the Bay of Concarneau (South‐Western Brittany, France); implications for interstitial fluid circulations. 17ème Congrès Français de Sédimentologie (ASF), Beauvais, France, 22‐24 octobre 2019 Publ. ASF n°81, Paris, 169 p.
  27. Jovanovich, D.B., Sumner, R.D. & Akins‐Easterlin, S.L. (1983) Ghosting and marine signature deconvolution: a prerequisite for detailed seismic interpretation. Geophysics, 48(11), 1468–1485.
    [Google Scholar]
  28. Judd, A. & Hovland, M. (2009) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge: Cambridge University Press.
    [Google Scholar]
  29. Kim, G.Y. (2006) Acoustic and elastic properties of the southeastern Yellow Sea Mud, Korea. The Journal of the Acoustical Society of Korea, 25(2E), 49–55.
    [Google Scholar]
  30. Kim, G.Y., Narantsetseg, B., Kim, J.W. & Chun, J.H. (2014) Physical properties and micro‐and macro‐structures of gassy sediments in the inner shelf of SE Korea. Quaternary International, 344, 170–180.
    [Google Scholar]
  31. Lee, M.W. & Collett, T.S. (2006) A method of shaly sand correction for estimating gas hydrate saturations using downhole electrical resistivity log data (Vol. 5121). US Department of the Interior, US Geological Survey.
    [Google Scholar]
  32. Lee, G.S., Kim, D.C., Lee, G.H., Park, S.C., Kim, G.Y., Yoo, D.G.et al. (2009) Physical and acoustic properties of gas‐bearing sediments in Jinhae Bay, the South Sea of Korea. Marine Georesources and Geotechnology, 27(2), 96–114.
    [Google Scholar]
  33. Liu, B., Han, T., Kan, G. & Li, G. (2013) Correlations between the in situ acoustic properties and geotechnical parameters of sediments in the Yellow Sea, China. Journal of Asian Earth Sciences, 77, 83–90.
    [Google Scholar]
  34. Loke, M.H. (2004) Tutorial: 2‐D and 3‐D electrical imaging surveys. https://www.researchgate.net/profile/Meng-Loke/publication/313653295_Electrical_imaging_surveys_for_environmental_and_engineering_studies/links/61ea69268d338833e38401d6/Electrical-imaging-surveys-for-environmental-and-engineering-studies.pdf
  35. Loke, M.H. (2016) RES2DINV version 6.1. Geoelectrical imaging 2D and 3D. Instruction Manual. Geotomo Software.
  36. Long, M., Donohue, S., L'Heureux, J.S., Solberg, I.L., Rønning, J.S., Limacher, R.et al. (2012) Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Canadian Geotechnical Journal, 49(10), 1158–1168.
    [Google Scholar]
  37. Marsset, B. (2016) ESS_FLUTE PLATEAU cruise, RV Thalia. https://doi.org/10.17600/16006200
  38. Martens, C.S. & Klump, J.V. (1980) Biogeochemical cycling in an organic‐rich coastal marine basin—I. Methane sediment‐water exchange processes. Geochimica et Cosmochimica Acta, 44(3), 471–490.
    [Google Scholar]
  39. Menier, D. (2003) Morphologie et remplissage des vallées fossiles sud‐armoricaines: apports de la stratigraphie sismique (Doctoral dissertation, Lorient).
  40. Menier, D., Reynaud, J.Y., Proust, J.N., Guillocheau, F., Guennoc, P., Bonnet, S.et al. (2006) Basement control on shaping and infilling of valleys incised at the southern coast of Brittany, France. SEPM Special Publications, 85, 37–55.
    [Google Scholar]
  41. Mosher, D.C., Moran, K. & Hiscott, R.N. (1994) Late Quaternary sediment, sediment mass flow processes and slope stability on the Scotian Slope, Canada. Sedimentology, 41(5), 1039–1061.
    [Google Scholar]
  42. Pinot, J.P. (1974) Le précontinent breton entre Pen Marc'h, Belle‐Ile et l'escarpement continental: Étude géomorphologique. Etat des travaux au 1° novembre 1972. 1° éd (Doctoral dissertation).
  43. Prince, P.K. (1990) Current drilling practice and the occurrence of shallow gas. In Safety in offshore drilling. Dordrecht: Springer, pp. 3–25.
    [Google Scholar]
  44. Qian, J., Wang, X., Collett, T.S., Guo, Y., Kang, D. & Jin, J. (2018) Downhole log evidence for the coexistence of structure II gas hydrate and free gas below the bottom‐simulating reflector in the South China Sea. Marine and Petroleum Geology, 98, 662–674.
    [Google Scholar]
  45. Raimbault, C., Duperret, A., Le Gall, B. & Authemayou, C. (2018) Structural inheritance and coastal geomorphology in SW Brittany, France: an onshore/offshore integrated approach. Geomorphology, 306, 141–154.
    [Google Scholar]
  46. Ren, S.R., Liu, Y., Liu, Y. & Zhang, W. (2010) Acoustic velocity and electrical resistance of hydrate bearing sediments. Journal of Petroleum Science and Engineering, 70(1–2), 52–56.
    [Google Scholar]
  47. Rice, D.D. & Claypool, G.E. (1981) Generation, accumulation, and resource potential of biogenic gas. AAPG Bulletin, 65(1), 5–25.
    [Google Scholar]
  48. Seo, Y.K., Kim, D.C. & Park, S.C. (2001) Characteristics of velocity and electrical resistivity in gassy sediments results of Mudbelt sediments in the southeastern inner shelf of Korea. The Sea, 6(4), 249–258.
    [Google Scholar]
  49. Shankar, U. & Riedel, M. (2011) Gas hydrate saturation in the Krishna–Godavari basin from P‐wave velocity and electrical resistivity logs. Marine and Petroleum Geology, 28(10), 1768–1778.
    [Google Scholar]
  50. Sharma, S. & Verma, G.K. (2015) Inversion of electrical resistivity data: a review. International Journal of Computer and Systems Engineering, 9(4), 400–406.
    [Google Scholar]
  51. Sills, G.C. & Wheeler, S.J. (1992) The significance of gas for offshore operations. Continental Shelf Research, 12(10), 1239–1250.
    [Google Scholar]
  52. Sultan, N., Voisset, M., Marsset, T., Vernant, A.M., Cauquil, E., Colliat, J.L. & Curinier, V. (2007) Detection of free gas and gas hydrate based on 3D seismic data and cone penetration testing: an example from the Nigerian continental slope. Marine Geology, 240(1–4), 235–255.
    [Google Scholar]
  53. Tarits, P., D'Eu, J.F., Balem, K., Hautot, S., Prevot, J. & Gaspari, F. (2012) Mapping seismically masked seabed structures with a new DC resistivity streamer. In Near Surface Geoscience 2012–18th European Meeting of Environmental and Engineering Geophysics (pp. cp‐306). European Association of Geoscientists & Engineers.
    [Google Scholar]
  54. Thi Van Ngo, A.T. & Ferguson, A.J. (2020) Identifying shallow gas zones by using seismic attributes, offshore Vietnam. Interpretation, 8(1), T67–T76.
    [Google Scholar]
  55. Toth, Z., Spiess, V., Mogollon, J.M. & Jensen, J.B. (2014) Estimating the free gas content in Baltic Sea sediments using compressional wave velocity from marine seismic data. Journal of Geophysical Research: Solid Earth, 119(12), 8577–8593.
    [Google Scholar]
  56. Vargas‐Cordero, I., Tinivella, U., Villar‐Muñoz, L. & Bento, J.P. (2018) High gas hydrate and free gas concentrations: An explanation for seeps offshore South Mocha Island. Energies, 11(11), 3062.
    [Google Scholar]
  57. Wilkens, R.H. & Richardson, M.D. (1998) The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckernförde Bay, Baltic Sea. Continental Shelf Research, 18(14–15), 1859–1892.
    [Google Scholar]
  58. Yamamoto, S., Alcauskas, J.B. & Crozier, T.E. (1976) Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data, 21(1), 78–80.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12230
Loading
/content/journals/10.1002/nsg.12230
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): electrical resistivity tomography; modelling; porosity; seismics; shallow marine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error