1887
Volume 21, Issue 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

Direct current resistivity and electromagnetic methods at low induction numbers are commonly used to characterize near‐surface structures. Although both methods are related to the same property, resistivity or conductivity, they have different sensitivities. The electromagnetic method at low induction numbers is more sensitive to conductive structures, but faces problems resolving resistive bodies, whereas the direct current method can image conductive and resistive variations. Additionally, the electromagnetic method at low induction numbers is less expensive and faster to collect the data, which seems a promising way to provide information at a low cost to enhance the model robustness. Aside from that, the exploration depth in both methods is not the same, but they can complement each other. In this work, a joint inversion algorithm based on a linear approximation was developed to incorporate both data. To achieve the goal, we rewrite the linear integral equations of electromagnetic data at low induction numbers in terms of resistivity logarithm to overcome the differences in magnitude and incorporate both data sets. We explore the potential of the joint inversion testing the algorithm with two synthetic models. In our tests, the joint model improvements are mainly in the conductive geometry and show favourable influence compared to the individual models. Finally, we tested the algorithm with field data collected in the coastal aquifer at Maneadero Valley. Despite the high anthropogenic electromagnetic noise in the area, the joint inversion results are coherent with the individual inversions of electromagnetic soundings at low induction numbers and direct current resistivity along with the geological setting.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12238
2023-03-21
2024-04-25
Loading full text...

Full text loading...

References

  1. Advanced Geosciences, I. (2006). Instruction Manual for EarthImager 2D, Version 2.1. 7, Resistivity and IP Inversion Software.
    [Google Scholar]
  2. Amatyakul, P., Vachiratienchai, C. and Siripunvaraporn, W. (2017) WSJointInv2D‐MT‐DCR: an efficient joint two‐dimensional magnetotelluric and direct current resistivity inversion. Computers & Geosciences, 102, 100–108.
    [Google Scholar]
  3. Candansayar, M.E. and Tezkan, B. (2008) Two‐dimensional joint inversion of radiomagnetotelluric and direct current resistivity data. Geophysical Prospecting, 56(5), 737–749.
    [Google Scholar]
  4. Cheng, J., Li, F., Peng, S., Sun, X., Zheng, J., and Jia, J. (2015). Joint inversion of TEM and DC in roadway advanced detection based on particle swarm optimization. Journal of Applied Geophysics, 123, 30–35.
    [Google Scholar]
  5. Constable, S.C., Parker, R.L. and Constable, C.G. (1987) Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289–300.
    [Google Scholar]
  6. Daesslé, L. W., Pérez‐Flores, M. A., Serrano‐Ortiz, J., Mendoza‐Espinosa, L., Manjarrez‐Masuda, E., Lugo‐Ibarra, K. C., and Gómez‐Treviño, E. (2014). A geochemical and 3D‐geometry geophysical survey to assess artificial groundwater recharge potential in the Pacific coast of Baja California, Mexico. Environmental Earth Sciences, 71(8), 3477–3490.
    [Google Scholar]
  7. Devi, A., Israil, M., Singh, A., Gupta, P.K., Yogeshwar, P. and Tezkan, B. (2020) Imaging of groundwater contamination using 3D joint inversion of electrical resistivity tomography and radio magnetotelluric data: a case study from Northern India. Near Surface Geophysics, 18(3), 261–274.
    [Google Scholar]
  8. Esparza, F.J. and Gómez‐Treviño, E. (1997) 1‐D inversion of resistivity and induced polarization data for the least number of layers. Geophysics, 62(6), 1724–1729.
    [Google Scholar]
  9. Fabriol, H., Martínez, M., and Vázquez, R. (2013). MEDICIONES GRAVIMETRICAS Y TELURICAS EN EL VALLE DE MANEADERO, ENSENADA, BAJA CALIFORNIA. Geofísica Internacional, 21(1).
  10. Gill, P., Hammarling, S., Murray, W., Saunders, M. and Wright, M. (1986) User's guide for LSSOL: a package for constrained linear least‐square and quadratic programming. Stanford University. Tech. Report SOL‐886‐1.
    [Google Scholar]
  11. Gómez‐Treviño, E., Esparza, F.J. and Méndez‐Delgado, S. (2002) New theoretical and practical aspects of electromagnetic soundings at low induction numbers. Geophysics, 67(5), 1441–1451.
    [Google Scholar]
  12. Gómez‐Treviño, E., Esparza, F.J. and Méndez‐Delgado, S. (2002) New theoretical and practical aspects of electromagnetic soundings at low induction numbers. Geophysics, 67(5), 1441–1451.
    [Google Scholar]
  13. Huang, J., Koganti, T., Santos, F.A.M. and Triantafilis, J. (2017) Mapping soil salinity and a fresh‐water intrusion in three‐dimensions using a quasi‐3D joint‐inversion of DUALEM‐421S and EM34 data. Science of the Total Environment, 577, 395–404.
    [Google Scholar]
  14. Kalscheuer, T., De los Ángeles García Juanatey, M., Meqbel, N. and Pedersen, L.B. (2010) Non‐linear model error and resolution properties from two‐dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data. Geophysical Journal International, 182(3), 1174–1188.
    [Google Scholar]
  15. McNeill, J.D. (1980) Electromagnetic terrain conductivity measurement at low induction numbers.
  16. Menke, W. (2018) Geophysical data analysis: discrete inverse theory. Academic Press.
    [Google Scholar]
  17. Meqbel, N. & Ritter, O. (2015) Joint 3D inversion of multiple electromagnetic datasets. Geophysical Prospecting, 63(6), 1450–1467.
    [Google Scholar]
  18. Meju, M. A. (1996). Joint inversion of TEM and distorted MT soundings: Some effective practical considerations. Geophysics, 61(1), 56–65.
    [Google Scholar]
  19. Meju, M. A. (1994). Geophysicaldata analysis: understanding inverse problem theory and practice. Society of Exploration Geophysicists.
    [Google Scholar]
  20. Méndez‐Delgado, S., Gómez‐Treviño, E., and Pérez‐Flores, M. A. (1999). Forward modelling of direct current and low‐frequency electromagnetic fields using integral equations. Geophysical Journal International, 137(2), 336–352.
    [Google Scholar]
  21. Monteiro Santos, F. A. (2004). 1‐D laterally constrained inversion of EM34 profiling data. Journal of Applied Geophysics, 56(2), 123–134.
    [Google Scholar]
  22. Monteiro Santos, F.A., Triantafilis, J., Bruzgulis, K.E. and Roe, J.A.E. (2010) Inversion of multiconfiguration electromagnetic (DUALEM‐421) profiling data using a one‐dimensional laterally constrained algorithm. Vadose Zone Journal, 9(1), 117–125.
    [Google Scholar]
  23. Monteiro Santos, F. A., and El‐Kaliouby, H. M. (2011). Quasi‐2D inversion of DCR and TDEM data for shallow investigations. Geophysics, 76(4), F239–F250. https://doi.org/10.1190/1.3587218
    [Google Scholar]
  24. Parsekian, A. D., Grana, D., Neves, F. dos A., Pleasants, M. S., Seyfried, M., Moravec, B. G., Chorover, J., Moraes, A. M., Smeltz, N. Y., and Westenhoff, J. H. (2021). Hydrogeophysical Comparison of Hillslope Critical Zone Architecture for Different Geologic Substrates. Geophysics, 86(3), 1–84.
    [Google Scholar]
  25. Pérez‐Flores, M.A., Antonio‐Carpio, R.G., Gómez‐Treviño, E., Ferguson, I. and Méndez‐Delgado, S. (2012) Imaging of 3D electromagnetic data at low‐induction numbers. Geophysics, 77(4), WB47–WB57.
    [Google Scholar]
  26. Pérez‐Flores, M.A., Méndez‐Delgado, S. and Gómez‐Treviño, E. (2001) Imaging low‐frequency and dc electromagnetic fields using a simple linear approximation. Geophysics, 66(4), 1067–1081.
    [Google Scholar]
  27. Press, W.H., Teukolsky, S.A., Flannery, B.P. and Vetterling, W.T. (1992) Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of scientific computing. Cambridge University Press.
    [Google Scholar]
  28. Sarmiento López, C. (1996). Modelo preliminar de flujo tridimensional del acuífero de la planicie costera del Valle de Maneadero, B.C., México. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California.
  29. Shiraz, F. A., Ardejani, F. D., Moradzadeh, A., and Arab‐Amiri, A. R. (2013). Investigating the source of contaminated plumes downstream of the Alborz Sharghi coal washing plant using EM34 conductivity data, VLF‐EM and DC‐resistivity geophysical methods. Exploration Geophysics, 44(1), 16–24.
    [Google Scholar]
  30. Triantafilis, J. and Santos, F.A.M. (2011) Hydrostratigraphic analysis of the Darling River valley (Australia) using electromagnetic induction data and a spatially constrained algorithm for quasi‐three‐dimensional electrical conductivity imaging. Hydrogeology Journal, 19(5), 1053–1063.
    [Google Scholar]
  31. Triantafilis, J., Wong, V., Monteiro Santos, F.A., Page, D. and Wege, R. (2012) Modeling the electrical conductivity of hydrogeological strata using joint‐inversion of loop‐loop electromagnetic data. Geophysics, 77(4), WB99–WB107.
    [Google Scholar]
  32. Vozoff, K., and Jupp, D. L. B. (1975). Joint inversion of geophysical data. Geophysical Journal International, 42(3), 977–991.
    [Google Scholar]
  33. Yang, C.‐H., and Tong, L.‐T. (1999). A study of joint inversion of direct current resistivity, transient electromagnetic and magnetotelluric sounding data. Terrestrial Atmospheric and Oceanic Sciences, 10, 293–302.
    [Google Scholar]
  34. Yang, X., and Lagmanson, M. B. (2003). Planning resistivity surveys using numerical simulations. 16th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, cp‐190.
    [Google Scholar]
  35. Yogeshwar, P., Tezkan, B., Israil, M., and Candansayar, M. E. (2012). Groundwater contamination in the Roorkee area, India: 2D joint inversion of radiomagnetotelluric and direct current resistivity data. Journal of Applied Geophysics, 76, 127–135.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12238
Loading
/content/journals/10.1002/nsg.12238
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 2D; data processing; electrical resistivity tomography; electromagnetic; inversion

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error