1887
Volume 21, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

Principal calcium sulphate rocks, such as gypsum and anhydrite, originate from evaporitic processes. Gypsum is considered an industrial raw material with high economic value, but anhydrite has no economic interest. Therefore, delineating the interface between sedimentary cover and gypsum, and differentiating gypsum from anhydrite has significant importance in the production planning of open pits. An electrical resistivity tomography study was carried out in the Bala gypsum formation (Central Anatolia, Turkey) to map the gypsum–anhydrite interface. Because open‐pit mining is economical up to a certain depth due to the cost of excavation, delineation of the upper boundary of gypsum is also necessary. As the survey's primary purpose is to delineate the interfaces of the sedimentary cover–gypsum and gypsum–anhydrite layers in shallow depths (50 m), a structure‐based model search scheme that includes a sequential use of global and local search methods has been applied for the derivation of the subsurface resistivity model. The conventional cell‐based conceptual model using the damped least‐squares inversion method is also used for comparison purposes. The strong resistivity contrast leads to an easy identification of cover and gypsum for both conceptual models. However, only the structure‐based conceptual model delineates the interface between gypsum and anhydrite. The estimated interfaces derived from the structure‐based model are consistent with the borehole data. This case history for gypsum investigation indicates the value of selecting an appropriate conceptual model for a specific exploration problem.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12239
2023-01-18
2023-01-27
Loading full text...

Full text loading...

References

  1. Akca, I. (2016) ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data. Acta Geophysica, 64, 443–462.
    [Google Scholar]
  2. Akca, I. & Başokur, A.T. (2010) Extraction of structure‐based geoelectric models by hybrid genetic algorithms. Geophysics, 75(1), F15–F22.
    [Google Scholar]
  3. Arıkan, Y. (1975) Tuzgölü Havzası’nın jeolojisi ve petrol imkanları. MTA Enstitüsü Dergisi, 85, 17–37.
    [Google Scholar]
  4. Asfahani, J. & Mohamad, R. (2002) Geo‐electrical investigation for sulphur prospecting in Teshreen Structure in Northeast Syria. Exploration and Mining Geology, 11, 49–59. https://doi.org/10.2113/11.1‐4.49
    [Google Scholar]
  5. Attwa, M., Akca, I., Basokur, A.T. & Günther, T. (2014) Structure‐based geoelectrical models derived from genetic algorithms: A case study for hydrogeological investigations along Elbe River coastal area. Germany. Journal of Applied Geophysics, 103, 57–70. https://doi.org/10.1016/j.jappgeo.2014.01.006
    [Google Scholar]
  6. Auken, E. & Christiansen, A.V. (2004) Layered and laterally constrained 2D inversion of resistivity data. Geophysics, 69, 752–761.
    [Google Scholar]
  7. Başokur, A.T. & Akca, I. (2011) Object‐based model verification by a genetic algorithm approach: Application to archaeological targets. Journal of Applied Geophysics, 74, 167–174. https://doi.org/10.1016/j.jappgeo.2011.05.004
    [Google Scholar]
  8. Başokur, A.T., Akca, I. & Siyam, N.W.A. (2007) Hybrid genetic algorithms in view of the evolution theories with application for the electrical sounding method. Geophysical Prospecting, 55, 393–406.
    [Google Scholar]
  9. Bonetto, S., Fornaro, M., Giulani, A. & Lasagna, M. (2008) Underground quarrying and water control: Some cases from Northern Italy, 10th Czech Republic: International Mine Water Association Congress. Expanded Abstracts, P02.
    [Google Scholar]
  10. Bozkurt, E. (2001) Neotectonics of Turkey—a synthesis. Geodinamica Acta, 14, 3–30. https://doi.org/10.1016/S0985‐3111(01)01066‐X
    [Google Scholar]
  11. Caselle, C., Bonetto, S. & Comina, C. (2009) Comparison of laboratory and field electrical resistivity measurements of a gypsum rock for mining prospection applications. International Journal of Mining Science and Technology, 29, 841–849. https://doi.org/10.1016/j.ijmst.2019.09.002
    [Google Scholar]
  12. Çemen, I., Göncüoğlu, M.C. & Dirik, K. (1999) Structural evolution of the Tuzgölü basin in Central Anatolia, Turkey. The Journal of Geology, 107, 693–706. https://doi.org/10.1086/314379
    [Google Scholar]
  13. Cheng, Q., Chen, X., Tao, M. & Binley, A. (2019) Characterization of karst structures using quasi‐3D electrical resistivity tomography. Environmental Earth Sciences, 78, 285. https://doi.org/10.1007/s12665‐019‐8284‐2
    [Google Scholar]
  14. deGroot‐Hedlin, C. & Constable, S. (1990) Occam's inversion to generate smooth, two‐dimensional models from magnetotelluric data. Geophysics, 55, 1613–1624. https://doi.org/10.1190/1.1442813
    [Google Scholar]
  15. Drahor, M.G. (2019) Identification of gypsum karstification using an electrical resistivity tomography technique: The case‐study of the Sivas gypsum karst area (Turkey). Engineering Geology, 252, 78–98. https://doi.org/10.1016/j.enggeo.2019.02.019
    [Google Scholar]
  16. Festa, V., Tripaldi, S., Siniscalchi, A., Acquafredda, P., Fiore, A. & Mele, D. et al. (2016) Geoelectrical resistivity variations and lithological composition in coastal gypsum rocks: A case study from the Lesina Marina area (Apulia, southern Italy). Engineering Geology, 202, 163–175. http://doi.org/10.1016/j.enggeo.2015.12.026
    [Google Scholar]
  17. Galley, G.C., Lelièvre, P.G. & Farquharson, C.G. (2020) Geophysical inversion for 3D contact surface geometry. Geophysics, 85, K27–K45. http://doi.org/10.1190/GEO2019‐0614.1
    [Google Scholar]
  18. Gołębiowski, T. & Jarosińska, E. (2019) Application of GPR and ERT methods for recognizing of gypsum deposits in urban areas. Acta Geophysica, 67, 2015–2030. https://doi.org/10.1007/s11600‐019‐00370‐7
    [Google Scholar]
  19. Görür, N., Oktay, F.Y., Seymen, İ. & Şengör, A.M.C. (1984) Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: Sedimentary record of a Neo‐Tethyan closure, Vol. 17, London: Geological Society. Special Publications, pp. 467–482. https://doi.org/10.1144/GSL.SP.1984.017.01.34
    [Google Scholar]
  20. Görür, N., Tüysüz, O. & Şengör, A.M.C. (1998) Tectonic evolution of the Central Anatolian Basins. International Geology Review, 40, 831–850. https://doi.org/10.1080/00206819809465241
    [Google Scholar]
  21. Guinea, A., Playa, E., Rivero, L. & Himi, M. (2010) Electrical resistivity tomography and induced polarization techniques applied to the identification of gypsum rocks. Near Surface Geophysics, 8, 249–257. https://doi.org/10.3997/1873‐0604.2010009
    [Google Scholar]
  22. Guinea, A., Playa, E., Rivero, L., Himi, M. & Bosch, R. (2010) Geoelectrical classification of gypsum Rocks. Surveys in Geophysics, 31, 557–580. https://doi.org/10.1007/s10712‐010‐9107‐x
    [Google Scholar]
  23. Guinea, A., Playa, E., Rivero, L., Ledo, J.J. & Queralt, P. (2012) The electrical properties of calcium sulfate rocks from decametric to micrometric scale. Journal of Applied Geophysics, 85, 80–91. https://doi.org/10.1016/j.jappgeo.2012.07.003
    [Google Scholar]
  24. Kavaklı, N., Kulaksız, S., Tombul, M. & Sever, M. (2016) Economic potential and production of gypsum deposits in Turkey. Journal of Underground Resources, 10, 43–50.
    [Google Scholar]
  25. Kaymakçı, N., Özçelik, Y., White, S.H. & Van Dijk, P.M. (2009) Tectonostratigraphy of the Çankırı Basin: Late Cretaceous to Early Miocene evolution of the Neotethyan Suture Zone in Turkey, Vol. 331, London: Geological Society. Special Publications, pp. 67–106. https://doi.org/10.1144/SP311.3
    [Google Scholar]
  26. Li, Y. & Oldenburg, D. (1992) Approximate inverse mappings in DC resistivity problems. Geophysical Journal International, 109, 343–362. https://doi.org/10.1111/j.1365‐246X.1992.tb00101.x
    [Google Scholar]
  27. Loke, M.H. (2018) Tutorial: 2‐D and 3‐D electrical imaging surveys. https://www.geotomosoft.com [Last access date, 30 Sept. 2021].
  28. Loke, M.H., Acworth, I. & Dahlin, T. (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34(3), 182–187.
    [Google Scholar]
  29. Loke, M.H., Dahlin, T. & Rucker, D.F. (2014) Smoothness‐constrained time‐lapse inversion of data from 3D resistivity surveys. Near Surface Geophysics, 12(1), 5–24. https://doi.org/10.3997/1873‐0604.2013025
    [Google Scholar]
  30. Manoutsoglou, E., Vachlas, G., Panagopoulos, G. & Hamdan, H. (2010) Delineation of gypsum/anhydrite transition zone using electrical tomography. A case study in an active open pit, Altsi, Crete, Greece. Journal of the Balkan Geophysical Society, 13, 21–28.
    [Google Scholar]
  31. Martínez‐Morenoa, F.J., Galindo‐Zaldívara, J., Pedrera, A., González‐Castillo, L., Ruano, P. & Calaforra, J.M. et al. (2015) Detecting gypsum caves with microgravity and ERT under soil water content variations (Sorbas, SE Spain). Engineering Geology, 193, 38–48. https://doi.org/10.1016/j.enggeo.2015.04.011
    [Google Scholar]
  32. Olayinka, A.I. & Yaramaci, U. (2000) Use of block inversion in the 2‐D interpretation of apparent resistivity data and its comparison with smooth inversion. Journal of Applied Geophysics, 45(2), 63–81.
    [Google Scholar]
  33. Orellana, E. (1982) Prospección geoeléctrica en corriente continua. Edition: 2a ed. corr. y aum View all formats and editions. Paraninfo, Madrid, Spanish.
    [Google Scholar]
  34. Özel, S. & Darıcı, N. (2020) Environmental hazard analysis of a gypsum karst depression area with geophysical methods: A case study in Sivas (Turkey). Environmental Earth Sciences, 79, 115. https://doi.org/10.1007/s12665‐020‐8861‐4
    [Google Scholar]
  35. Öztan, N.S. & Süzen, M.L. (2011) Mapping evaporate minerals by ASTER. International Journal of Remote Sensing, 32, 1651–1673. https://doi.org/10.1080/01431160903586799
    [Google Scholar]
  36. Parkhomenko, E.J. (1967) Electrical properties of rocks. New York: Plenum Press.
    [Google Scholar]
  37. Robinson, E.S. & Çoruh, C. (1988) Basic exploration geophysics. Hoboken, NJ: John Wiley and Sons.
    [Google Scholar]
  38. Sasaki, Y. (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospect, 40, 453–463. https://doi.org/10.1111/j.1365‐2478.1992.tb00536.x
    [Google Scholar]
  39. Şengör, A.M.C. & Yılmaz, Y. (1981) Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241. https://doi.org/10.1016/0040‐1951(81)90275‐4
    [Google Scholar]
  40. Sevil, J., Gutiérrez, F., Zarroca, M., Desir, G., Carbonel, D., Guerrero, J. et al. (2017) Sinkhole investigation in an urban area by trenching in combination with GPR, ERT and high‐precision leveling. Mantled evaporite karst of Zaragoza city. NE Spain. Engineering Geology, 231, 9–10. https://doi.org/10.1016/j.enggeo.2017.10.009
    [Google Scholar]
  41. Smith, T., Hoversten, M., Gasperikova, E. & Morrison, F. (1999) Sharp boundary inversion of 2D magnetotelluric data. Geophysical Prospecting, 47, 469–486.
    [Google Scholar]
  42. Ulugergerli, E.U. & Akca, İ. (2006) Detection of cavities in gypsum. Journal of the Balkan Geophysical Society, 9(1), 8–19.
    [Google Scholar]
  43. Zhdanov, M.S. (2018) Principles of ill‐posed inverse problem solution in foundations of geophysical electromagnetic theory and methods, 2nd edition, Amsterdam: Elsevier, pp. 269–287.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12239
Loading
/content/journals/10.1002/nsg.12239
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): electrical resistivity tomography; imaging; inversion; shallow subsurface
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error