1887
Volume 21, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

Abstract

A broad understanding of the subsoil characteristics is required to deal with uncertainty in the infrastructure planning phase or even in the diagnosis of infrastructure damage. In this work, electrical resistivity and seismic methods have been employed for lithological characterization and geomechanical parameters assessment. The study area is characterized by high variability in geotechnical characteristics due to complex lithology. For lithological discrimination, we have used a soft clustering method to combine the independently electrical‐ and seismic‐derived models. The outputs of this integration process are zonal models that help to decrease interpretation uncertainties. From single seismic profiles, both Vp and Vs information are extracted allowing geomechanical parameters to be estimated. All this information is critical for assessing the variance and inhomogeneity of the subsoil characteristics. The methodology shown in this work can be used in the infrastructure planning phase as well as to ascertain the causes of detected damage on built infrastructure.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12247
2023-12-01
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/nsg/21/6/nsg12247.html?itemId=/content/journals/10.1002/nsg.12247&mimeType=html&fmt=ahah

References

  1. Benjumea, B., Gabàs, A., Macau, A., Ledo, J., Bellmunt, F., Figueras, S. et al. (2021) Undercover karst imaging using a fuzzy c‐means data clustering approach (Costa Brava, NE Spain). Engineering Geology, 293, 106327.
    [Google Scholar]
  2. García‐Yeguas, A., Ledo, J., Piña‐Varas, P., Prudencio, J., Queralt, P., Marcuello, A. et al. (2017) A 3D joint interpretation of magnetotelluric and seismic tomographic models: the case of the volcanic island of Tenerife. Computers & Geosciences, 109, 95–105.
    [Google Scholar]
  3. Holmes, J., Sivakumar, V., Wilkinson, P., Huntley, D., Chambers, J. & Donohue, S. (2021). Assessing landslide risk using near‐surface geophysics for long‐term monitoring of an unstable slope affecting transport infrastructure in Western Canada. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2021 (pp. 160–160). Houston, TX: Society of Exploration Geophysicists and Environment and Engineering Geophysical Society.
    [Google Scholar]
  4. ICGC (2015) Estudi geològic de les causes de les patologies existents en els habitatges de les àrees de Can Castanyer i de Riells, del municipi de Bigues I Riells. AP_0041_15. Barcelona, Spain: Generalitat de Catalunya. Informes tècnics Institut Cartogràfic i Geològic de Catalunya.
    [Google Scholar]
  5. Konstantaki, L.A., Carpentier, S., Garofalo, F., Bergamo, P. & Socco, L.V. (2013) Determining hydrological and soil mechanical parameters from multichannel surface‐wave analysis across the Alpine Fault at Inchbonnie, New Zealand. Near Surface Geophysics, 11(4), 435–448.
    [Google Scholar]
  6. Loke, M.H. (2020) Tutorial: 2‐D and 3‐D electrical imaging surveys. Geotomo software, Malaysia.
  7. Neducza, B. (2007) Stacking of surface waves. Geophysics, 72(2), V51–V58, https://doi.org/10.1190/1.2431635
    [Google Scholar]
  8. Niederleithinger, E., Abraham, O. & Mooney, M. (2015) Geophysical methods in civil engineering: overview and new concepts. In International Symposium Non‐Destructive Testing in Civil Engineering (NDT‐CE) (NDTCE 2015), 15–17 September 2015, Berlin, Germany. e‐Journal of Nondestructive Testing, 20(11), 1435–4934.
    [Google Scholar]
  9. O'Neill, A., Dentith, M. & List, R. (2003) Full‐waveform P‐SV reflectivity inversion of surface waves for shallow engineering applications. Exploration Geophysics, 34, 158–173, https://doi.org/10.1071/EG03158.
    [Google Scholar]
  10. Paasche, H., Tronicke, J., Holliger, K., Green, A.G. & Maurer, H. (2006) Integration of diverse physical‐property models: subsurface zonation and petrophysical parameter estimation based on fuzzy c‐means cluster analyses. Geophysics, 71(3), H33–H44.
    [Google Scholar]
  11. Pasquet, S. & Bodet, L. (2017) SWIP: an integrated workflow for surface‐wave dispersion inversion and profiling. Geophysics, 82(6), WB47–WB61.
    [Google Scholar]
  12. Pasquet, S., Bodet, L., Longuevergne, L., Dhemaied, A., Camerlynck, C., Rejiba, F. et al. (2015) 2D characterization of near‐surface VP/VS: Surface‐wave dispersion inversion versus refraction tomography. Near Surface Geophysics, 13(4), 315–332.
    [Google Scholar]
  13. Pegah, E. & Liu, H. (2016) Application of near‐surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterizations: a case study. Engineering Geology, 208, 100–113.
    [Google Scholar]
  14. Samarasinghe, S. (2016) Neural networks for applied sciences and engineering: From fundamentals to complex pattern recognition. Farnham, UK: Auerbach Publications.
    [Google Scholar]
  15. Svensson, M. & Friberg, O. (2018, October) Communication of geophysics in underground infrastructure projects. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2018 (pp. 361–366). Society of Exploration Geophysicists and Environment and Engineering Geophysical Society.
    [Google Scholar]
  16. Vagnon, F., Comina, C. & Arato, A. (2022) Evaluation of different methods for deriving geotechnical parameters from electric and seismic streamer data. Engineering Geology, 303, 106670.
    [Google Scholar]
  17. Whatelet, M. (2008) An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophysical Research Letters, 35(9), L09301.
    [Google Scholar]
  18. Zhang, J.J. & Bentley, L.R. (2005) Factors determining Poisson's ratio. CREWES Research Report, 17(1), 1–15.
    [Google Scholar]
/content/journals/10.1002/nsg.12247
Loading
/content/journals/10.1002/nsg.12247
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): electrical resistivity tomography; geotechnical; integration; refraction; surface wave

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error