1887
Volume 21, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

As geophysical parameters are not always functionally related, treating multiple geophysical data sets to have a realistic geological model is not straightforward. An effective strategy to derive a geological interpretation is a combination of several geophysical methods with geological and well observations, each with its advantages and limitations. Gravity and magnetic methods are encouraging tools to investigate salt domes due to enough density and susceptibility contrasts between salt minerals and the background sedimentary rocks. In this paper, the dome‐shaped salt unit in the Qarah‐Aghaje area in Zanjan, located in the northwestern part of Iran, is investigated through the integration of 3D inversion models obtained from gravity and magnetic data and geological and well information. The 3D inversion of both data sets is made using a weighted damped minimum length solution for which model weighting is constructed from multiplying depth weighting and compactness constraints. At first, a synthetic case with a high degree of similarity to the real case is considered to evaluate the efficiency of the adopted inverse algorithm. Then, the inversion algorithm is implemented on the collected gravity and magnetic methods, and interpretation is made utilizing 3D obtained inverse models and geologic and well data. The result shows a dome‐shaped potash‐bearing salt unit that starts from a depth of 12 m and continues to the depth of 200 m. The drilled well in the centre of the main source of the salt (Well 3) demonstrates a depth range of 11–115 m.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12252
2023-05-16
2024-04-24
Loading full text...

Full text loading...

References

  1. Abedi, M. (2018) An integrated approach to evaluate the Aji‐Chai potash resources in Iran using potential field data. Journal of African Earth Sciences, 139, 379–391. https://doi.org/10.1016/j.jafrearsci.2017.12.005
    [Google Scholar]
  2. Arfaoui, M., Inoubli, M.H., Tlig, S. & Alouani, R. (2011) Gravity analysis of salt structures. An example from the El Kef‐Ouargha region (northern Tunisia). Geophysical Prospecting, 59(3), 576–591. https://doi.org/10.1111/j.1365‐2478.2010.00941.x
    [Google Scholar]
  3. Avdeeva, A., Avdeev, D. & Jegen, M. (2012) Detecting a salt dome overhang with magnetotellurics: 3D inversion methodology and synthetic model studies. Geophysics, 77(4), E251–E263. https://doi.org/10.1190/geo2011‐0167.1
    [Google Scholar]
  4. Barbosa, V.C. & Silva, J.B. (2011) Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data. Geophysical Prospecting, 59, 1021–1034. https://doi.org/10.1111/j.1365‐2478.2011.00997.x
    [Google Scholar]
  5. Barrett, B., Heinson, G., Hatch, M. & Telfer, A. (2005) River sediment salt‐load detection using a water‐borne transient electromagnetic system. Journal of Applied Geophysics, 58(1), 29–44. https://doi.org/10.1016/j.jappgeo.2005.03.002
    [Google Scholar]
  6. Behlau, J. & Mingerzahn, G. (2001) Geological and tectonic investigations in the former Morsleben salt mine (Germany) as a basis for the safety assessment of a radioactive waste repository. Engineering Geology, 61(2–3), 83–97. https://doi.org/10.1016/S0013‐7952(01)00038‐2
    [Google Scholar]
  7. Bonvalot, S., Diament, M. & Gabalda, G. (1998) Continuous gravity recording with Scintrex CG‐3M meters: a promising tool for monitoring active zones. Geophysical Journal International, 135(2), 470–494. https://doi.org/10.1046/j.1365‐246X.1998.00653.x
    [Google Scholar]
  8. Boulanger, O. & Chouteau, M. (2001) Constraints in 3D gravity inversion. Geophysical Prospecting, 49(2), 265–280. https://doi.org/10.1046/j.1365‐2478.2001.00254.x
    [Google Scholar]
  9. Cella, F. & Fedi, M. (2012) Inversion of potential field data using the structural index as weighting function rate decay. Geophysical Prospecting, 60(2), 313–336. https://doi.org/10.1111/j.1365‐2478.2011.00974.x
    [Google Scholar]
  10. Darvishzadeh, A. (1991) Geology of Iran. Tehran: Nashre Danesh Emroz Publisher (in Persian).
    [Google Scholar]
  11. Ezersky, M. (2005) The seismic velocities of Dead Sea salt applied to the sinkhole problem. Journal of Applied Geophysics, 58(1), 45–58. https://doi.org/10.1016/j.jappgeo.2005.01.003
    [Google Scholar]
  12. Farhadi, R. (2004) An introduction to potash exploration in Iran. Systematic exploration project. Tehran: Geological Survey and Mineral Exploration of Iran. 26 (in Persian)
    [Google Scholar]
  13. Fedi, M. (2007) DEXP: a fast method to determine the depth and the structural index of potential field sources. Geophysics, 72(1), 1–11. https://doi.org/10.1190/1.2399452
    [Google Scholar]
  14. Fox, J. (1987) Seismic interpretation in salt‐controlled basins. The Leading Edge, 6(3), 11–11. https://doi.org/10.1190/1.1487149
    [Google Scholar]
  15. Garrett, D.E. (1996) Potash: deposits, processing, properties and uses. Heidelberg, Germany: Springer Science & Business Media. https://doi.org/10.1007/978‐94‐009‐1545‐9
    [Google Scholar]
  16. Gundelach, V., Blindow, N., Buschmann, U. & Salat, C. (2012) Underground GPR measurements for spatial investigations in a salt dome. In: 2012 14th International Conference on Ground Penetrating Radar (GPR). New York, USA: IEEE, pp. 464–468. https://doi.org/10.1109/ICGPR.2012.6254910
    [Google Scholar]
  17. Hamdi‐Nasr, I., Inoubli, M.H., Salem, A.B., Tlig, S. & Mansouri, A. (2009) Gravity contributions to the understanding of salt tectonics from the Jebel Cheid area (dome zone, northern Tunisia). Geophysical Prospecting, 57(4), 719–728. https://doi.org/10.1111/j.1365‐2478.2009.00788.x
    [Google Scholar]
  18. Holser, W.T., Brown, R.J.S., Roberts, F.A., Fredriksson, O.A. & Unterberger, R.R. (1972) Radar logging of a salt dome. Geophysics, 37(5), 889–906. https://doi.org/10.1190/1.1440307
    [Google Scholar]
  19. Hoversten, G.M., Constable, S.C. & Morrison, H.F. (2000) Marine magnetotellurics for base‐of‐salt mapping: Gulf of Mexico field test at the Gemini structure. Geophysics, 65(5), 1476–1488. https://doi.org/10.1190/1.1444836
    [Google Scholar]
  20. Jackson, M.P.A., Cornelius, R.N., Craig, C.H., Gansser, A., Stocklin, J. & Talbot, J.C. (1991) Salt diapirs of the Great Kavir central Iran. Geological Society of America Memoir, 177, 140. https://doi.org/10.1130/MEM177
    [Google Scholar]
  21. Jamaldin, S. (2010) Potash exploration Qarah‐Aghaje. Geological Survey of Iran report: 122 (in Persian).
  22. Kalhor, R. (1961) Geology of neogene formation in Varamin‐Garmsar area and evaluation of Abardej Nose. Unpublished National Iranian Oil Company, Geological report 233: 17.
  23. Kearey, P., Brooks, M. & Hill, I. (2002) An introduction to geophysical exploration, Vol. 4. London: John Wiley & Sons.
    [Google Scholar]
  24. Kebede, H., Alemu, A. & Fisseha, S. (2020) Upward continuation and polynomial trend analysis as a gravity data decomposition, case study at Ziway‐Shala basin, central Main Ethiopian rift. Heliyon, 6(1), e03292. https://doi.org/10.1016/j.heliyon.2020.e03292
    [Google Scholar]
  25. Kovin, O. (2011) Mapping of evaporite deformation in a potash mine using ground penetrating radar: Upper Kama deposit, Russia. Journal of Applied Geophysics, 74(2–3), 131–141. https://doi.org/10.1016/j.jappgeo.2011.04.009
    [Google Scholar]
  26. Last, B.J. & Kubik, K. (1983) Compact gravity inversion. Geophysics, 48(6), 713–721. https://doi.org/10.1190/1.1441501
    [Google Scholar]
  27. Li, Y. & Oldenburg, D.W. (1996) 3D inversion of magnetic data. Geophysics, 61(2), 394–408. https://doi.org/10.1190/1.1443968
    [Google Scholar]
  28. Li, Y. & Oldenburg, D.W. (1998) 3D inversion of gravity data. Geophysics, 63(1), 109–119. https://doi.org/10.1190/1.1444302
    [Google Scholar]
  29. Lucha, P., Cardona, F., Gutiérrez, F. & Guerrero, J. (2008) Natural and human‐induced dissolution and subsidence processes in the salt outcrop of the Cardona Diapir (NE Spain). Environmental Geology, 53(5), 1023–1035. https://doi.org/10.1007/s00254‐007‐0729‐3
    [Google Scholar]
  30. Menke, W. (2012) Geophysical data analysis: discrete inverse theory: MATLAB edition, Vol. 45. Cambridge, MA, USA: Academic Press. https://doi.org/10.1016/C2011‐0‐69765‐0
    [Google Scholar]
  31. Milano, M., Varfinezhad, R., Bizhani, H., Moghadasi, M., Kalateh, A.N. & Baghzendani, H. (2021) Joint interpretation of magnetic and gravity data at the Golgohar mine in Iran. Journal of Applied Geophysics, 195, 104476. https://doi.org/10.1016/j.jappgeo.2021.104476
    [Google Scholar]
  32. Nabavi, M.G. (1976) An introductory to the Geology of Iran. Geological Survey of Iran, 109 (in Persian), 54.
    [Google Scholar]
  33. Nezafati, N. (2006) Au‐Sn‐W‐Cu‐mineralization in the Astaneh‐Sarband Area, West Central Iran, including a comparison of the ores with ancient bronze artifacts from Western Asia, Ph.D. Dissertation. Tübingen, Germany: Eberhard Karls University of Tübingen
    [Google Scholar]
  34. Okiwelu, A.A., Osazua, B.I. & Lawal, K.M. (2010) Isolation of residuals determined from polynomial fitting to gravity data of Calabar Flank, southeastern Nigeria. Pacific Journal of Science and Technology, 11(1), 576–585.
    [Google Scholar]
  35. Paoletti, V., Ialongo, S., Florio, G., Fedi, M. & Cella, F. (2013) Self‐constrained inversion of potential fields. Geophysical Journal International, 195(2), 854–869. https://doi.org/10.1093/gji/ggt313
    [Google Scholar]
  36. Paoletti, V., Milano, M., Baniamerian, J. & Fedi, M. (2020) Magnetic field imaging of salt structures at Nordkapp Basin, Barents Sea. Geophysical Research Letters, 47(18), 1–12. https://doi.org/10.1029/2020GL089026
    [Google Scholar]
  37. Parnow, S., Oskooi, B. & Florio, G. (2021) Improved linear inversion of low induction number electromagnetic data. Geophysical Journal International, 224(3), 1505–1522. https://doi.org/10.1093/gji/ggaa531
    [Google Scholar]
  38. Portniaguine, O. & Zhdanov, M.S. (1999) Focusing geophysical inversion images. Geophysics, 64(3), 874–887. https://doi.org/10.1190/1.1444596
    [Google Scholar]
  39. Pilkington, M. (2009) 3D magnetic data‐space inversion with sparseness constraints. Geophysics, 74(1), L7–L15. https://doi.org/10.1190/1.3026538
    [Google Scholar]
  40. Rahimpour‐Bonab, H. & Alijani, N. (2003) Petrography, diagenesis and depositional model for potash deposits of north central Iran, and use of bromine geochemistry as a prospecting tool. Carbonate and Evaporite, 18(1), 19–28. https://doi.org/10.1007/BF03178384
    [Google Scholar]
  41. Rahimpour‐Bonab, H. & Kalantarzadeh, Z. (2005) Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran. Journal of Asian Earth Sciences, 25(1), 157–166. https://doi.org/10.1016/j.jseaes.2004.02.004
    [Google Scholar]
  42. Ratcliff, D.W., Gray, S.H. & Whitmore, N.D., Jr. (1992) Seismic imaging of salt structures in the Gulf of Mexico. The Leading Edge, 11(4), 15–31. https://doi.org/10.1190/1.1436876
    [Google Scholar]
  43. Razavi, S.A. & Jafari, F. (2008) Potash exploration via magnetometry and gravity methods in Aji‐Chai (East Azerbaijan) and Ghareh‐Aghaj (Zanjan Province). Geological Survey of Iranreport (in Persian): 75
    [Google Scholar]
  44. Riba, O., Maldonado, A. & Ramı'rez, J. (1975) Mapa Geológico de España, scale 1:50.000, 2nd series, no. 330. Cardona, Madrid: Instituto Geológico y Minero de España, Servicio de Publicaciones del Ministerio de Industria: 58.
    [Google Scholar]
  45. Sadedin, N. & Samimi, M. (1990) Potash deposits in the Garmsar area. Geological Survey of Iran, unpublished report: 55 (in Persian).
    [Google Scholar]
  46. Siever, K. & Elsen, R. (2010) Salt dome exploration by directional borehole radar wireline service. In: Proceedings of the XIII Internarional Conference on Ground Penetrating Radar: 1–5. New York, USA: IEEE. https://doi.org/10.1109/ICGPR.2010.5550081
    [Google Scholar]
  47. Silva Dias, F.J., Barbosa, V.C. & Silva, J.B. (2011) Adaptive learning 3D gravity inversion for salt‐body imaging. Geophysics, 76(3), 149–157. https://doi.org/10.1190/1.3555078
    [Google Scholar]
  48. Simeonova, A.P. & Iasky, R.P. (2005) Seismic mapping, salt deformation, and hydrocarbon potential of the central western Officer Basin. Western Australia. Western Australia Geological Survey, Report, 98: 49.
    [Google Scholar]
  49. Sofyan, Y., Kamah, Y., Nishijima, J., Fujimitsu, Y., Ehara, S., Fukuda, Y. & Taniguchi, M., 2011. CG‐3/3M autograv, automated gravity meter operator manua, 1995. Earth, Planets and Space, 63(11), 1157–1167.
    [Google Scholar]
  50. Stadtler, C., Fichler, C., Hokstad, K., Myrlund, E.A., Wienecke, S. & Fotland, B. (2014) Improved salt imaging in a basin context by high resolution potential field data: Nordkapp Basin, Barents Sea. Geophysical Prospecting, 62(3), 615–630. https://doi.org/10.1111/1365‐2478.12101
    [Google Scholar]
  51. Stocklin, J. (1968) Salt deposits of the Middle East. In: Mattox, R.B., Holser, W.T. (Eds.) Saline deposits: a symposium based on papers from the International Conference on saline deposits, Houston, Texas, 1962, Vol. 88. Boulder, CO, USA: Geological Society of America, pp. 157–181. IWC Special Paper 88. https://doi.org/10.1130/SPE88‐p157
    [Google Scholar]
  52. Tao, M., Jorgensen, M. & Zhdanov, M.S. (2021) Mapping the salt structures from magnetic and gravity gradiometry data in Nordkapp Basin, Barents Sea. In: First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists. pp. 874–878.
    [Google Scholar]
  53. Tavakoli, M., Kalateh, A.N., Rezaie, M., Gross, L. & Fedi, M. (2021) Sequential joint inversion of gravity and magnetic data via the cross gradient constraint. Geophysical Prospecting, 69(7), 1542–1559. https://doi.org/10.1111/1365‐2478.13120
    [Google Scholar]
  54. Telford, W.M., Geldart, L.P. & Sheriff, R.E. (1990) Applied geophysics. New York, USA: Cambridge University Press
    [Google Scholar]
  55. Tikhonov, A.N. & Arsenin, V.Y. (1977) Solutions of ill‐posed problems. New York, 1(30), 487.
    [Google Scholar]
  56. Varfinezhad, R., Oskooi, B. & Fedi, M. (2020) Joint inversion of DC resistivity and magnetic data, constrained by cross gradients, compactness and depth weighting. Pure and Applied Geophysics, 177(9), 4325–4343. https://doi.org/10.1007/s00024‐020‐02457‐5
    [Google Scholar]
  57. Varfinezhad, R., Fedi, M. & Milano, M. (2022) The role of model weighting functions in the gravity and DC resistivity inversion. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15. https://doi.org/10.1109/TGRS.2022.3149139
    [Google Scholar]
  58. Varfinezhad, R. & Parnow, S. (2022) 3D Electromagnetic low induction number modeling using integral equations. Journal of the Earth and Space Physics, 47(4), 99–110. 10.22059/JESPHYS.2021.325291.1007330
    [Google Scholar]
  59. Varfinezhad, R. & Ardestani, V.E. (2021) Kernel based regularization parameter and source dependent depth weighting in gravity inversion. Bulletin of Geophysics and Oceanography, 40(1), 85–100. https://doi.org/10.4430/bgo00372
    [Google Scholar]
  60. Wu, X. (2016) Methods to compute salt likelihoods and extract salt boundaries from 3D seismic images. Geophysics, 81(6), IM119–IM126.
    [Google Scholar]
  61. Yaramanci, U. & Flach, D. (1992) Resistivity of rock‐salt in ASSE (Germany) and petrophysical aspects. Geophysical Prospecting, 40(1), 85–100. https://doi.org/10.1111/j.1365‐2478.1992.tb00365.x
    [Google Scholar]
  62. Yaramanci, U. (2000) Geoelectric exploration and monitoring in rock salt for the safety assessment of underground waste disposal sites. Journal of Applied Geophysics, 44(2–3), 181–196. https://doi.org/10.1016/S0926‐9851(99)00013‐0
    [Google Scholar]
  63. Zhang, Y., Xiong, S. & Chen, T. (1998) Application of airborne gamma‐ray spectrometry to geoscience in China. Applied Radiation and Isotopes, 49(1–2), 139–146. https://doi.org/10.1016/S0969‐8043(97)00222‐4
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12252
Loading
/content/journals/10.1002/nsg.12252
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 3D; gravity; interpretation; inversion; magnetic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error