1887
Volume 21, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

Derivatives of the displacement tensor with respect to the independent model parameters of the subsurface, also called Fréchet derivatives (or sensitivity kernels), are a key ingredient for seismic full‐waveform inversion (FWI) with a local‐search optimization algorithm. They provide a quantitative measure of the expected changes in the seismograms due to perturbations of the subsurface model parameters for a given survey geometry. Because 2.5‐D wavefield modelling involves a real point source in a 2‐D geological model with 3‐D (spherical) wave properties, it yields synthetic data much closer to the actual practical field data than the commonly used 2‐D wave simulation does, which uses an unrealistic line‐source in which the waves spread cylindrically. Based on our recently developed general 2.5‐D wavefield modelling scheme, we apply the perturbation method to obtain explicit analytic expressions for the derivatives of the displacement tensor for 2.5‐D/2‐D frequency‐domain seismic FWI in general viscoelastic anisotropic media. We then demonstrate the numerical calculations of all these derivatives in two common cases: (1) viscoelastic isotropic; and (2) viscoelastic tilted transversely isotropic (TTI) solids. Examples of the differing sensitivity patterns for the various derivatives are investigated and compared for four different homogeneous models involving 2‐D and 2.5‐D modelling. Moreover, the numerical results are verified against the analytic solutions for homogeneous models. We further validate the numerical derivatives in a 2‐D heterogeneous viscoelastic TTI case by conducting a synthetic data experiment of frequency‐domain FWI to individually recover the 12 independent model parameters (density, dip angle, 5 elastic moduli and 5 corresponding ‐factors) in a simple model comprising an anomalous square box target embedded in a uniform background. Another 2.5‐D multi‐target model experiment presenting impacts from four common seismic surveying geometries validates the Fréchet derivatives again.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12265
2023-12-01
2025-06-19
Loading full text...

Full text loading...

References

  1. Aki, K. & Richards, P.G. (1980) Quantitative seismology: theory and methods. San Francisco: Freeman.
    [Google Scholar]
  2. Auer, L., Nuber, A.M., Greenhalgh, S.A., Maurer, H. & Marelli, S. (2013) A critical appraisal of asymptotic 3D‐to‐2D data transformation in full‐waveform seismic crosshole tomography. Geophysics, 78(6), R235–R247.
    [Google Scholar]
  3. Bai, T. & Tsvankin, I. (2019) Source‐independent waveform inversion for attenuation estimation in anisotropic media. Geophysical Prospecting, 67(9 Advances in Seismic Anisotropy), 2343–2357.
    [Google Scholar]
  4. Barros, L.D., Dietrich, M. & Valette, B. (2010) Full waveform inversion of seismic waves reflected in a stratified porous medium. Geophysical Journal International, 182(3), 1543–1556.
    [Google Scholar]
  5. Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J. et al. (2016) Global adjoint tomography: first‐generation model. Geophysical Journal International, 207(3), 1739–1766.
    [Google Scholar]
  6. Brossier, R. (2011) Two‐dimensional frequency‐domain visco‐elastic full waveform inversion: parallel algorithms, optimization and performance. Computers & Geosciences, 37(4), 444–455.
    [Google Scholar]
  7. Brossier, R., Operto, S. & Virieux, J. (2009) Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics, 74(6), WCC105–WCC118.
    [Google Scholar]
  8. Carcione, J.M. (2007) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media. Amsterdam: Elsevier.
    [Google Scholar]
  9. Carcione, J.M., Kosloff, D. & Kosloff, R. (1988) Wave propagation simulation in a linear viscoacoustic medium. Geophysical Journal International, 93(2), 393–401.
    [Google Scholar]
  10. Casula, G. & Carcione, J. (1992) Generalized mechanical model analogies of linear viscoelastic behaviour. Bollettino di geofisica teorica ed applicata, XXXIV(136), 235–256.
    [Google Scholar]
  11. Emmerich, H. & Korn, M. (1987) Incorporation of attenuation into time‐domain computations of seismic wave fields. Geophysics, 52(9), 1252–1264.
    [Google Scholar]
  12. Fichtner, A. & van Driel, M. (2014) Models and Fréchet kernels for frequency‐(in)dependent Q. Geophysical Journal International, 198(3), 1878–1889.
    [Google Scholar]
  13. Forbriger, T., Groos, L. & Schäfer, M. (2014) Line‐source simulation for shallow‐seismic data. Part 1: Theoretical background. Geophysical Journal International, 198(3), 1387–1404.
    [Google Scholar]
  14. Gauthier, O., Virieux, J. & Tarantola, A. (1986) Two‐dimensional nonlinear inversion of seismic waveforms. Numerical Results: Geophysics, 51(7), 1387–1403.
    [Google Scholar]
  15. Greenhalgh, S.A., Bing, Z. & Green, A. (2006) Solutions, algorithms and inter‐relations for local minimization search geophysical inversion. Journal of Geophysics and Engineering, 3(2), 101–113.
    [Google Scholar]
  16. Gurevich, B., Zyrianov, V.B. & Lopatnikov, S.L. (1997) Seismic attenuation in finely layered porous rocks: effects of fluid flow and scattering. Geophysics, 62(1), 319–324.
    [Google Scholar]
  17. Ha, W. & Shin, C. (2012) Laplace‐domain full‐waveform inversion of seismic data lacking low‐frequency information. Geophysics, 77(5), R199–R206.
    [Google Scholar]
  18. Hicks, G.J. & Pratt, R.G. (2001) Reflection waveform inversion using local descent methods: estimating attenuation and velocity over a gas‐sand deposit. Geophysics, 66(2), 598–612.
    [Google Scholar]
  19. Kamei, R. & Pratt, R. (2013) Inversion strategies for visco‐acoustic waveform inversion. Geophysical Journal International, 194(2), 859–884.
    [Google Scholar]
  20. Keating, S. & Innanen, K.A. (2019) Parameter crosstalk and modeling errors in viscoacoustic seismic full‐waveform inversion. Geophysics, 84(4), R641–R653.
    [Google Scholar]
  21. Komatitsch, D., Xie, Z., Bozdağ, E., Sales de Andrade, E., Peter, D., Liu, Q. et al. (2016) Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion. Geophysical Journal International, 206(3), 1467–1478.
    [Google Scholar]
  22. Kurzmann, A., Przebindowska, A., Köhn, D. & Bohlen, T. (2013) Acoustic full waveform tomography in the presence of attenuation: a sensitivity analysis. Geophysical Journal International, 195(2), 985–1000.
    [Google Scholar]
  23. Liu, X. & Greenhalgh, S. (2019) Fitting viscoelastic mechanical models to seismic attenuation and velocity dispersion observations and applications to full waveform modelling. Geophysical Journal International, 219(3), 1741–1756.
    [Google Scholar]
  24. Moczo, P. & Kristek, J. (2005) On the rheological models used for time‐domain methods of seismic wave propagation. Geophysical Research Letters, 32(1), L01360.
    [Google Scholar]
  25. Mora, P. (1987) Nonlinear two‐dimensional elastic inversion of multioffset seismic data. Geophysics, 52(9), 1211–1228.
    [Google Scholar]
  26. Operto, S. & Miniussi, A. (2018) On the role of density and attenuation in three‐dimensional multiparameter viscoacoustic VTI frequency‐domain FWI: an OBC case study from the North Sea. Geophysical Journal International, 213(3), 2037–2059.
    [Google Scholar]
  27. Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, A. & Dell'Aversana, P. (2004) Quantitative imaging of complex structures from dense wide‐aperture seismic data by multiscale traveltime and waveform inversions: a case study. Geophysical Prospecting, 52(6), 625–651.
    [Google Scholar]
  28. Operto, S., Gholami, Y., Prieux, V., Ribodetti, A., Brossier, R., Metivier, L. et al. (2013) A guided tour of multiparameter full‐waveform inversion with multicomponent data: from theory to practice. The Leading Edge, 32(9), 1040–1054.
    [Google Scholar]
  29. Operto, S., Miniussi, A., Brossier, R., Combe, L., Métivier, L., Monteiller, V., Ribodetti, A. et al. (2015) Efficient 3‐D frequency‐domain mono‐parameter full‐waveform inversion of ocean‐bottom cable data: application to Valhall in the visco‐acoustic vertical transverse isotropic approximation. Geophysical Journal International, 202(2), 1362–1391.
    [Google Scholar]
  30. Pratt, R.G., Shin, C. & Hick, G. (1998) Gauss‐Newton and full Newton methods in frequency‐space seismic waveform inversion. Geophysical Journal International, 133(2), 341–362.
    [Google Scholar]
  31. Prieux, V., Brossier, R., Operto, S. & Virieux, J. (2013) Multiparameter full waveform inversion of multicomponent ocean‐bottom‐cable data from the Valhall field. Part 2: Imaging compressive‐wave and shear‐wave velocities. Geophysical Journal International, 194(3), 1665–1681.
    [Google Scholar]
  32. Romanowicz, B. (1995) A global tomographic model of shear attenuation in the upper mantle. Journal of Geophysical Research: Solid Earth, 100(B7), 12375–12394.
    [Google Scholar]
  33. Schäfer, M., Groos, L., Forbriger, T. & Bohlen, T. (2014) Line‐source simulation for shallow‐seismic data. Part 2: Full‐waveform inversion—a synthetic 2‐D case study. Geophysical Journal International, 198(3), 1405–1418.
    [Google Scholar]
  34. Shin, C. & Ho Cha, Y. (2009) Waveform inversion in the Laplace‐Fourier domain. Geophysical Journal International, 177(3), 1067–1079.
    [Google Scholar]
  35. Shin, C., Pyun, S. & Bednar, J. (2007) Comparison of wavefield inversion, Part 1: Conventional wavefield vs. logarithmic wavefield. Geophysical Prospecting, 55(4), 449–464.
    [Google Scholar]
  36. Sirgue, L. & Pratt, R.G. (2004) Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics, 69(1), 231–248.
    [Google Scholar]
  37. Sun, M., Yang, J., Dong, L., Liu, Y. & Huang, C. (2017) Density reconstruction in multiparameter elastic full‐waveform inversion. Journal of Geophysics and Engineering, 14(6), 1445–1462.
    [Google Scholar]
  38. Tape, C., Liu, Q., Maggi, A. & Tromp, J. (2009) Adjoint tomography of the southern California crust. Science (New York, N.Y.), 325(5943), 988–992.
    [Google Scholar]
  39. Tarantola, A. (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266.
    [Google Scholar]
  40. Tarayoun, A., Brossier, R., Cao, J., Jauré, S., Laforêt, S. & Métivier, L. (2022) HPC implementations on SEM46: a 3D modeling and inversion code for anisotropic visco‐elastic coupled acoustic media. Paper read at Sixth EAGE high performance computing workshop. European Association of Geoscientists & Engineers. pp. 1–5.
  41. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.
    [Google Scholar]
  42. Tromp, J., Tape, C. & Liu, Q. (2005) Seismic tomography, adjoint methods, time reversal and banana‐doughnut kernels. Geophysical Journal International, 160(1), 195–216.
    [Google Scholar]
  43. Vavryčuk, V. (2007) Asymptotic Green's function in homogeneous anisotropic viscoelastic media. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2086), 2689–2707.
    [Google Scholar]
  44. Vigh, D. & Starr, E.W. (2008) 3D prestack plane‐wave, full‐waveform inversion. Geophysics, 73(5), VE135–VE144.
    [Google Scholar]
  45. Virieux, J. & Operto, S. (2009) An overview of full‐waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1–WCC26.
    [Google Scholar]
  46. Virieux, J., Asnaashari, A., Brossier, R., Métivier, L., Ribodetti, A. & Zhou, W. (2017) An introduction to full waveform inversion. In: Grechka, V. & Wapenaar, K. (Eds.) Encyclopedia of exploration geophysics. Houston: Society of Exploration Geophysicists, R1‐1–R1‐40.
    [Google Scholar]
  47. Wang, E.‐J., Liu, Y., Ji, Y.‐X., Chen, T.‐S. & Liu, T. (2019) Q full‐waveform inversion based on the viscoacoustic equation. Applied Geophysics, 16(1), 77–91.
    [Google Scholar]
  48. Williamson, P.R. & Pratt, R.G. (1995) A critical review of acoustic wave modeling procedures in 2.5 dimensions. Geophysics, 60(2), 591–595.
    [Google Scholar]
  49. Yang, P., Brossier, R., Métivier, L. & Virieux, J. (2016) A review on the systematic formulation of 3‐D multiparameter full waveform inversion in viscoelastic medium. Geophysical Journal International, 207(1), 129–149.
    [Google Scholar]
  50. Yang, Q. & Malcolm, A. (2021) Frequency domain full‐waveform inversion in a fluid‐saturated poroelastic medium. Geophysical Journal International, 225(1), 68–84.
    [Google Scholar]
  51. Yang, Q., Zhou, B., Riahi, M.K. & Al‐Khaleel, M. (2020) A new generalized stiffness reduction method for 2D/2.5 D frequency‐domain seismic wave modeling in viscoelastic anisotropic media. Geophysics, 85(6), T315–T329.
    [Google Scholar]
  52. Zhao, J.‐g., Huang, X.‐x., Liu, W.‐f., Zhao, W.‐j., Song, J.‐y., Xiong, B. et al. (2017) 2.5‐D frequency‐domain viscoelastic wave modelling using finite‐element method. Geophysical Journal International, 211(1), 164–187.
    [Google Scholar]
  53. Zhou, B. & Greenhalgh, S.A. (2003) Crosshole seismic inversion with normalized full‐waveform amplitude data. Geophysics, 68(4), 1320–1330.
    [Google Scholar]
  54. Zhou, B. & Greenhalgh, S. (2009) On the computation of the Fréchet derivatives for seismic waveform inversion in 3D general anisotropic, heterogeneous media. Geophysics, 74(5), WB153–WB163.
    [Google Scholar]
  55. Zhou, B. & Greenhalgh, S. (2011) Computing the sensitivity kernels for 2.5‐D seismic waveform inversion in heterogeneous, anisotropic media. Pure and Applied Geophysics, 168, 1729–1748.
    [Google Scholar]
  56. Zhou, B., Greenhalgh, S. & Maurer, H. (2012) 2.5‐D frequency‐domain seismic wave modeling in heterogeneous, anisotropic media using a Gaussian quadrature grid technique. Computers & Geosciences, 39, 18–33.
    [Google Scholar]
  57. Zhou, B., Greenhalgh, S. & Greenhalgh, M. (2012) Wavenumber sampling strategies for 2.5‐D frequency‐domain seismic wave modelling in general anisotropic media. Geophysical Journal International, 188(1), 223–238.
    [Google Scholar]
  58. Zhou, B., Wang, Y., Greemhalgh, S. & Liu, X. (2019) Frequency‐domain wavefield differences and conversion between 2.5D and 2D seismic wave modelling in elastic anisotropic media. 81st EAGE conference and exhibition. EAGE. pp. 1–5.
  59. Zhu, H., Bozdağ, E., Peter, D. & Tromp, J. (2012) Structure of the European upper mantle revealed by adjoint tomography. Nature Geoscience, 5(7), 493–498.
    [Google Scholar]
/content/journals/10.1002/nsg.12265
Loading
/content/journals/10.1002/nsg.12265
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): attenuation; inversion; modelling; seismic; waves

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error