1887
Volume 21, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

Abstract

Seismic investigations were performed at a site in the southwest of Sweden where major quick‐clay landslides have occurred in the past. Given the potential high risk of the area and the presence of medium infrastructures, the site posed a need for detailed investigations in a wide depth range and in high resolution. A high‐fold seismic survey was designed and conducted along two profiles using a 1–2 m receiver and shot spacing in order to retrieve both P‐ and S‐wavefield seismic images from vertical component data. The data were analysed by combining first‐break traveltime tomography and surface‐wave analysis as well as P‐ and S‐wavefield reflection seismic imaging. Using the first breaks, P‐wave velocity () models were estimated, indicating the bedrock topography along the profiles and the sediment characteristics. The S‐wave velocity () models were estimated from the surface waves and indicated areas of low shear strength. Combined with and models, this permits the estimation of /, a parameter that can indicate areas with high water content, significant for the detection of quick clays and possible liquefaction issues. The results are integrated with the P‐ and S‐wave reflection seismic images and compared with other geophysical investigations, such as magnetic and gravity data that were collected along the profiles.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12269
2023-12-01
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/nsg/21/6/nsg12269.html?itemId=/content/journals/10.1002/nsg.12269&mimeType=html&fmt=ahah

References

  1. Aylsworth, J.M. & Hunter, J.A. (2004) A geophysical investigation of the geological controls on landsliding and soft deformation in sensitive marine clay near Ottawa. In: 57th Canadian Geotechnical Conference, Géo Québec. pp. 30–37.
  2. Brodic, B., Malehmir, A., Juhlin, C., Dynesius, L., Bastani, M. & Palm, H. (2015) Multicomponent broadband digital‐based seismic landstreamer for near‐surface applications. Journal of Applied Geophysics, 123, 227–241. https://doi.org/10.1016/j.jappgeo.2015.10.009
    [Google Scholar]
  3. Brooks, G. & Crow, H. (2020) A guide to landslides in sensitive clay along the north side of the Ottawa River, west of Ottawa‐Gatineau, southwestern Quebec. Geological Survey of Canada Open File 8724. https://doi.org/10.4095/326118
  4. Comina, C., Krawczyk, C.M., Polom, U. & Socco, L.V. (2017) Integration of SH seismic reflection and love‐wave dispersion data for shear wave velocity determination over quick clays. Geophysical Journal International, 210(3), 1922–1931. https://doi.org/10.1093/gji/ggx276
    [Google Scholar]
  5. Choquette, M., Berube, M. & Locat, J. (1987) Mineralogical and microtextural changes associated with lime stabilization of marine clays from eastern Canada. Applied Clay Science, 2(3), 215–232.
    [Google Scholar]
  6. Crawford, C.B. (1968) Quick clays of eastern Canada. Engineering Geology, 2(4), 239–265. https://doi.org/10.1016/0013‐7952(68)90002‐1
    [Google Scholar]
  7. Dahlin, T., Löfroth, H., Schälin, D. & Suer, P. (2013) Mapping of quick clay using geoelectrical imaging and CPTU‐resistivity. Near Surface Geophysics, 11, 659–670. https://doi.org/10.3997/1873‐0604.2013044
    [Google Scholar]
  8. Donohue, S., Long, M., O‐Connor, P., Eide Helle, T., Aspmo Pfaffhuber, A. & Rømoen, M. (2012) Multi‐method geophysical mapping of quick clay. Near Surface Geophysics, 10(3), 207–219. https://doi.org/10.3997/1873‐0604.2012003
    [Google Scholar]
  9. Foti, S., Lai, C.G., Rix, G.J. & Strobbia, C. (2014) Surface wave methods for near‐surface site characterization. Boca Raton: CRC Press.
    [Google Scholar]
  10. Gao, L., Zhang, H., Gao, L., He, C., Xin, H. & Shen, W. (2022) High‐resolution Vs tomography of South China by joint inversion of body wave and surface wave data. Tectonophysics, 824, 229228. https://doi.org/10.1016/j.tecto.2022.229228
    [Google Scholar]
  11. Geertsema, M. & Torrance, J.K. (2005) Quick Clay from the Mink Creek Landslide near Terrace, British Columbia: geotechnical Properties, Mineralogy, and Geochemistry. Canadian Geotechnical Journal, 42(3), 907–918. https://doi.org/10.1139/t05‐028
    [Google Scholar]
  12. Grahn, T. & Jaldell, H. (2017) Assessment of data availability for the development of landslide fatality curves. Landslides, 14(3), 1113–1126. https://doi.org/10.1007/s10346‐016‐0775‐6
    [Google Scholar]
  13. Gregersen, O. (1981) The quick clay landslide in Rissa, Norway. Norwegian Geotechnical Institute Publication, 135, 1–6.
    [Google Scholar]
  14. Haskell, N.A. (1953) The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43(1), 17–34. https://doi.org/10.1785/BSSA0430010017
    [Google Scholar]
  15. Helle, T.E., Nordal, S. & Aagaard, P. (2018) Improved geotechnical properties in salt‐treated highly sensitive landslide‐prone clays. Proceedings of the Institution of Civil Engineers—Geotechnical Engineering, 171(3), 232–242. https://doi.org/10.1680/jgeen.17.00071
    [Google Scholar]
  16. Iverson, W.P., Fahmy, B.A. & Smithson, S.B. (1989) VpVs from mode‐converted P‐SV reflections. Geophysics, 54(7), 843–852. https://doi.org/10.1190/1.1442713
    [Google Scholar]
  17. Karimpour, M., Slob, E.C. & Socco, L.V. (2022) Physically constrained 2D joint inversion of surface and body wave tomography. Journal of Environmental and Engineering Geophysics, 27(2), 57–71. https://doi.org/10.32389/JEEG21‐031
    [Google Scholar]
  18. Kerr, P.F. (1963) Quick clay. Scientific American, 209(5), 132–143.
    [Google Scholar]
  19. Kerr, P.F. & Drew, I.M. (1968) Quick‐clay slides in the U.S.A. Engineering Geology, 2(4), 215–238. https://doi.org/10.1016/0013‐7952(68)90001‐X
    [Google Scholar]
  20. Krawczyk, C.M. & Polom, U. (2018) Detection of mobile quick‐clay layers using shear wave reflection seismic. In: Misra, A.A. & Mukherjee, S. (Eds.) Atlas of structural geological interpretation from seismic images. Hoboken: Wiley, pp. 175–176. https://doi.org/10.1002/9781119158332.ch33
    [Google Scholar]
  21. L'heureux, J.‐S. & Long, M. (2017) Relationship between shear‐wave velocity and geotechnical parameters for Norwegian clays. Journal of Geotechnical and Geoenvironmental Engineering, 143(6), 04017013. https://doi.org/10.1061/(ASCE)GT.1943‐5606.0001645
    [Google Scholar]
  22. Locat, J. & Lefebvre, G. (1985) The compressibility and sensitivity of an artificially sedimented clay soil: the Grande‐Baleine Marine Clay, Québec, Canada. Marine Geotechnology, 6(1), 1–28. https://doi.org/10.1080/10641198509388178
    [Google Scholar]
  23. Locat, A., Locat, P., Demers, D., Leroueil, S., Robitaille, D. & Lefebvre, G. (2017) The Saint‐Jude landslide of 10 May 2010, Quebec, Canada: investigation and characterization of the landslide and its failure mechanism. Canadian Geotechnical Journal, 54(10), 1357–1374. https://doi.org/10.1139/cgj‐2017‐0085
    [Google Scholar]
  24. Long, M., Sebastien L'heureux, J., Kristian Fiskvik Bache, B., Kristian Lund, A., Hove, S., Gunnar Sødal, K. et al. (2019) Site characterisation and some examples from large scale testing at the Klett quick clay research site. AIMS Geosciences, 5(3), 344–389. https://doi.org/10.3934/geosci.2019.3.344
    [Google Scholar]
  25. Lundberg, E., Malehmir, A., Juhlin, C., Bastani, M. & Andersson, M. (2014) High‐resolution 3D reflection seismic investigation over a quick‐clay landslide scar in Southwest Sweden. Geophysics, 79(2), B97–B107. https://doi.org/10.1190/geo2013‐0225.1
    [Google Scholar]
  26. Malehmir, A. (2019) Recording longer for higher‐resolution near‐surface imaging—shear‐wave reflections from vertical sources and receivers. In: EAGE, 25th. European Meeting of Environmental and Engineering Geophysics. EAGE, pp. 1–5. https://doi.org/10.3997/2214‐4609.201902403
  27. Malehmir, A. (2021) The forgotten shear‐wave reflections in the compressional‐wave surveys. In: EAGE, 27th European Meeting of Environmental and Engineering GeophysicsEAGE, pp. 1–5. https://doi.org/10.3997/2214‐4609.202120042
  28. Malehmir, A., Bastani, M., Krawczyk, C.M., Gurk, M., Ismail, N., Polom, U. et al. (2013) Geophysical assessment and geotechnical investigation of quick‐clay landslides—a Swedish case study. Near Surface Geophysics, 11(3), 341–352. https://doi.org/10.3997/1873‐0604.2013010
    [Google Scholar]
  29. Malehmir, A., Saleem, M.U. & Bastani, M. (2013) High‐resolution reflection seismic investigations of quick‐clay and associated formations at a landslide scar in Southwest Sweden. Journal of Applied Geophysics, 92, 84–102. https://doi.org/10.1016/j.jappgeo.2013.02.013
    [Google Scholar]
  30. Odenstad, S. (1958) Jordskredet i Göta den 7 juni 1957. Geologiska Föreningen i Stockholm Förhandlingar, 80(1), 76–86. https://doi.org/10.1080/11035895809447207
    [Google Scholar]
  31. Paige, C.C. & Saunders, M.A. (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1), 43–71. https://doi.org/10.1145/355984.355989
    [Google Scholar]
  32. Papadopoulou, M., Colombero, C., Staring, M., Singer, J., Eddies, R., Fliedner, M., Janod, F. & Socco, V. (2021) Fast near‐surface investigation with surface‐wave attributes. In: EAGE, 2nd Conference on Geophysics for Infrastructure Planning, Monitoring and BIM. EAGE, pp. 1–5. https://doi.org/10.3997/2214‐4609.202120128
  33. Park, C.B., Miller, R.D. & Xia, J. (1998) Imaging dispersion curves of surface waves on multi‐channel record. In: SEG, Technical Program Expanded Abstracts 1998. SEG, pp. 1377–1380. https://doi.org/10.1190/1.1820161
  34. Pasquet, S., Sauvin, G., Andriamboavonjy, M.R., Bodet, L., Lecomte, I. & Guérin, R. (2014) Surface‐wave dispersion inversion versus SH‐wave refraction tomography in saturated and poorly dispersive quick clays. In: EAGE, 20th European Meeting of Environmental and Engineering Geophysics. EAGE. https://doi.org/10.3997/2214‐4609.20142045
  35. Penna, I. & Solberg, I.L. (2021) Landscape changes and bedrock reconstruction in Gjerdrum area. Methodological Approach and Main Results, NGU Report.
  36. Persson, M. (2014) Predicting spatial and stratigraphic quick‐clay distribution in SW Sweden (Ph. D. dissertation). University of Gothenburg.
  37. Pertuz, T. & Malehmir, A. (2023) Ultra‐high‐resolution shear‐wave reflection imaging of vertical component data in a quick‐clay prone to landslide area in southwestern Sweden. Geophysics, 88, B121–B133. https://doi.org/10.1190/geo2021‐0832.1
    [Google Scholar]
  38. Podvin, P. & Lecomte, I. (1991) Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International, 105(1), 271–284. https://doi.org/10.1111/j.1365‐246X.1991.tb03461.x
    [Google Scholar]
  39. Pugin, A.J.‐M., Brewer, K., Cartwright, T., Pullan, S.E., Perret, D., Crow, H. et al. (2013) Near surface S‐wave seismic reflection profiling–new approaches and insights. First Break, 31(2), 49–60. https://doi.org/10.3997/1365‐2397.2013005
    [Google Scholar]
  40. Pugin, A., Yilmaz, Ö. (2019) Optimum source‐receiver orientations to capture PP, PS, SP, and SS reflected wave modes. The Leading Edge, 38(1), 45–52. https://doi.org/10.1190/tle38010045.1
    [Google Scholar]
  41. Rankka, K., Andersson‐Sköld, Y., Hultén, C., Larsson, R., Leroux, V. & Dahlin, T. (2004) Quick Clay in Sweden. SGI.
  42. Salas‐Romero, S., Malehmir, A., Snowball, I. & Dessirier, B. (2019) Subsurface characterization of a quick‐clay vulnerable area using near‐surface geophysics and hydrological modelling. Solid Earth, 10(5), 1685–1705. https://doi.org/10.5194/se‐10‐1685‐2019
    [Google Scholar]
  43. Salas‐Romero, S., Malehmir, A., Snowball, I. & Brodic, B. (2021) Geotechnical site characterization using multichannel analysis of surface waves: a case study of an area prone to quick‐clay landslides in southwest Sweden. Near‐Surface Geophysics, 19(6), 699–715. https://doi.org/10.1002/nsg.12173
    [Google Scholar]
  44. Salas‐Romero, S., Malehmir, A., Snowball, I., Lougheed, B.C. & Hellqvist, M. (2016) Identifying landslide preconditions in Swedish quick clays—insights from integration of surface geophysical, core sample‐ and downhole property measurements. Landslides, 13(5), 905–923. https://doi.org/10.1007/s10346‐015‐0633‐y
    [Google Scholar]
  45. Sauvin, G., Lecomte, I., Bazin, S., Hansen, L., Vanneste, M. & L'heureux, J.‐S. (2014) On the integrated use of geophysics for quick‐clay mapping: the hvittingfoss case study, Norway. Journal of Applied Geophysics, 106, 1–13. https://doi.org/10.1016/j.jappgeo.2014.04.001
    [Google Scholar]
  46. Socco, L.V., Boiero, D., Foti, S. & Wisén, R. (2009) Laterally constrained inversion of ground roll from seismic reflection records. Geophysics, 74(6), G35–G45. https://doi.org/10.1190/1.3223636
    [Google Scholar]
  47. Thomson, W.T. (1950) Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21(2), 89–93. https://doi.org/10.1063/1.1699629
    [Google Scholar]
  48. Torrance, J.K. (1979) Post‐depositional changes in the pore‐water chemistry of the sensitive marine clays of the Ottawa area, Eastern Canada. Engineering Geology, 14(2–3), 135–147. https://doi.org/10.1016/0013‐7952(79)90081‐4
    [Google Scholar]
  49. Tryggvason, A., Rognvaldsson, S.T. & Flovenz, O.G. (2002) Three‐dimensional imaging of the P‐ and S‐wave velocity structure and earthquake locations beneath Southwest Iceland. Geophysical Journal International, 151(3), 848–866. https://doi.org/10.1046/j.1365‐246X.2002.01812.x
    [Google Scholar]
  50. Wang, S., Malehmir, A. & Bastani, M. (2016) Geophysical characterization of areas prone to quick‐clay landslides using radio‐magnetotelluric and seismic methods. Tectonophysics, 677–678, 248–260. https://doi.org/10.1016/j.tecto.2016.04.020
    [Google Scholar]
  51. With, C., Löfroth, H., Bastani, M., Persson, L., Rodhe, L., Hedfors, J. et al. (2022) A methodology for mapping of quick clay in Sweden. Natural Hazards, 112(3), 2549–2576. https://doi.org/10.1007/s11069‐022‐05278‐y
    [Google Scholar]
  52. Yilmaz, O. (2001) Seismic data analysis: processing, inversion, and interpretation of seismic data. Investigations in geophysics, no. 10, vol. 2. Society of Exploration Geophysicists.
    [Google Scholar]
/content/journals/10.1002/nsg.12269
Loading
/content/journals/10.1002/nsg.12269
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): landslide; reflection; surface wave; S‐wave; tomography

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error