1887
Special Issue: Ground Penetrating Radar (GPR) Numerical Modelling Research and Practice
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

Scattering is often detected when ground‐penetrating radar (GPR) surveys are performed on glaciers at different latitudes and in various environments. This event is often seen as an undesirable feature on data, but it can be exploited to quantify the debris content in mountain glaciers through a dedicated scattering inversion approach. At first, we considered the possible variables affecting the scattering mechanisms, namely the dielectric properties of the scatterers, their size, shape and quantity, as well as the wavelength of the electromagnetic (EM) incident field to define the initial conditions for the inversion. Each parameter was independently evaluated with forward modelling tests to quantify its effect in the scattering mechanism. After extensive tests, we found that the dimension and the amount of scatterers are the crucial parameters. We further performed modelling randomizing the scatterer distribution and dimension, critically evaluating the stability of the approach and the complexity of the models. After the tests on synthetic data, the inversion procedure was applied to field datasets, acquired on the Eastern Gran Zebrù glacier (Central Italian Alps). The results show that even a low percentage of debris can produce high scattering. The proposed methodology is quite robust and able to provide quantitative estimates of the debris content within mountain glaciers in different conditions.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12274
2024-04-23
2024-05-22
Loading full text...

Full text loading...

/deliver/fulltext/nsg/22/2/nsg12274.html?itemId=/content/journals/10.1002/nsg.12274&mimeType=html&fmt=ahah

References

  1. Anderson, L.S. & Anderson, R.S. (2016) Modelling debris‐covered glaciers: response to steady debris deposition. The Cryosphere, 10, 1105–1124. https://doi.org/10.5194/tc‐10‐1105‐2016
    [Google Scholar]
  2. Akhaury, U., Giannakis, I., Warren, C. & Giannopoulos, A. (2021) Machine learning based forward solver: an automatic framework in gprMax. In: Proceedings of 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Valletta, Malta. Piscataway, NJ, IEEE. pp. 1–6. https://doi.org/10.1109/IWAGPR50767.2021.9843172
  3. Bano, M. (2006) Modeling GPR reflection from a water table. Why high GPR frequency don't image the water table? In: Proceedings of the EAGE 68th Conference & Exhibition, Vienna, Austria.
  4. Barto, A.G. & Mahadevan, S. (2003) Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13, 341–379. https://doi.org/10.1023/A:1025696116075
    [Google Scholar]
  5. Bradford, J.H., Nichols, J., Mikesell, T. & Harper, J. (2009) Continuous profiles of electromagnetic wave velocity and water content in glaciers: an example from Bench Glacier, Alaska, USA. Annales of Glaciology, 50(51), 1–9. https://doi.org/10.3189/172756409789097540
    [Google Scholar]
  6. Cheng, W., Sun, H.‐H., Tan, K.H. & Fan, Z. (2023) Estimating the diameter of reinforcing bars using an ultra‐wideband MIMO GPR array. Construction and Building Materials, 365, 129924. https://doi.org/10.1016/j.conbuildmat.2022.129924
    [Google Scholar]
  7. Colombero, C., Comina, C., De Toma, E., Franco, D. & Godio, A. (2019) Ice thickness estimation from geophysical investigations on the terminal lobes of Belvedere Glacier (NW Italian Alps). Remote Sensing, 11, 805. https://doi.org/10.3390/rs11070805
    [Google Scholar]
  8. Delf, R., Bingham, R.G., Curtis, A., Singh, S., Giannopoulos, A., Schwarz, B. et al. (2022) Reanalysis of polythermal glacier thermal structure using radar diffraction focusing. Journal of Geophysical Research – Earth Science, 127, 2. https://doi.org/10.1029/2021JF006382
    [Google Scholar]
  9. Diamanti, N. & Annan, A.P. (2019) Understanding the use of ground‐penetrating radar for assessing clandestine tunnel detection. The Leading Edge, 38, 453–459. https://doi.org/10.1190/tle38060453.1
    [Google Scholar]
  10. Diamanti, N., Annan, A.P. & Vargemezis, G. (2022) Phantom subsurface targets in ground penetrating radar (GPR) data. Geophysics, 87, 4. https://doi.org/10.1190/geo2021‐0692.1
    [Google Scholar]
  11. Dossi, M., Forte, E. & Pipan, M. (2018) Quantitative analysis of GPR signals: transmitted wavelet, amplitude decay and sampling‐related amplitude distortions. Pure and Applied Geophysics, 175, 1103–1122. https://doi.org/10.1007/s00024‐017‐1752‐2
    [Google Scholar]
  12. Evans, S. (1965) Dielectric properties of ice and snow–a review. Journal of Glaciology, 5(42), 773–792. https://doi.org/10.3189/S0022143000018840
    [Google Scholar]
  13. Feng, J., Yang, L., Hoxha, E., Jiang, B. & Xiao, J. (2023) Robotic inspection of underground utilities for construction survey using a ground penetrating radar. Journal of Computing in Civil Engineering, 37(1), 04022049. https://doi.org/10.1061/(ASCE)CP.1943‐5487.0001062
    [Google Scholar]
  14. Forte, E., Santin, I., Ponti, S., Colucci, R.R., Gutgesell, P. & Guglielmin, M. (2021) New insights in glaciers characterization by differential diagnosis integrating GPR and remote sensing techniques: a case study for the Eastern Gran Zebrù glacier (Central Alps). Remote Sensing of Environment, 267, 112715. https://doi.org/10.1016/j.rse.2021.112715
    [Google Scholar]
  15. Franke, S., Gerber, T.A., Warren, C., Jansen, D., Eisen, O. & Dahl‐Jensen, D. (2023) Investigating the radar response of englacial debris entrained basal ice units in East Antarctica using electromagnetic forward modelling. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–16. https://doi.org/10.1109/TGRS.2023.3277874
    [Google Scholar]
  16. Giannakis, I., Giannopoulos, A. & Warren, C. (2016) A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 9(1), 37–51. https://doi.org/10.1109/JSTARS.2015.2468597
    [Google Scholar]
  17. Giannakis, I., Giannopoulos, A. & Warren, C. (2021) A machine learning scheme for estimating the diameter of reinforcing bars using ground penetrating radar. IEEE Geoscience and Remote Sensing Letters, 18(3), 461–465. https://doi.org/10.1109/LGRS.2020.2977505
    [Google Scholar]
  18. Giannopoulos, A. & Diamanti, N. (2008) Numerical modelling of ground penetrating radar response from rough subsurface interfaces. Near Surface Geophysics, 6, 357–369. https://doi.org/10.3997/1873‐0604.2008024
    [Google Scholar]
  19. González‐Huici, M.A. & Giovanneschi, F. (2013) A combined strategy for landmine detection and identification using synthetic GPR responses. Journal of Applied Geophysics, 99, 154–165. https://doi.org/10.1016/j.jappgeo.2013.08.006
    [Google Scholar]
  20. Haruzi, P., Schmäck, J., Zhou, Z., Kruk, J., Vereecken, H., Vanderborght, J. et al.(2022) Detection of tracer plumes using full‐waveform inversion of time‐lapse ground penetrating radar data: a numerical study in a high‐resolution aquifer model. Water Resources Research, 58(5), e2021WR030110. https://doi.org/10.1029/2021WR030110
    [Google Scholar]
  21. Hillebrand, T.R., Conway, H., Koutnik, M., Martín, C., Paden, J. & Winberry, J.P. (2021) Radio‐echo sounding and waveform modeling reveal abundant marine ice in former rifts and basal crevasses within Crary Ice Rise, Antarctica. Journal of Glaciology, 67(264), 641–652. https://doi.org/10.1017/jog.2021.17
    [Google Scholar]
  22. Hunziker, J., Slob, E.C. & Irving, J. (2023) Fast 3D ground penetrating radar simulations for glaciers. Computers & Geosciences, 173, 105320. https://doi.org/10.1016/j.cageo.2023.105320
    [Google Scholar]
  23. Jol, H.M. (2009) Ground penetrating radar theory and application, 1st edition. Amsterdam: Elsevier Science.
    [Google Scholar]
  24. Kelly, T.B., Angel, M.N., O'Connor, D.E., Huff, C.C., Morris, L.E. & Wach, G.D. (2021) A novel approach to 3D modelling ground‐penetrating radar (GPR) data – a case study of a cemetery and applications for criminal investigation. Forensic Science International, 325, 110882. https://doi.org/10.1016/j.forsciint.2021.110882
    [Google Scholar]
  25. King, E.C., Smith, A.M., Murray, T. & Stuart, G.W. (2008) Glacier‐bed characteristics of midtre lovénbreen, Svalbard, from high‐resolution seismic and radar surveying. Journal of Glaciology, 54(184), 145–156.
    [Google Scholar]
  26. Maisto, D., Donnarumma, F. & Pezzulo, G. (2015) Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving. Journal of The Royal Society Interface, 12, 1335. https://doi.org/10.1098/rsif.2014.1335
    [Google Scholar]
  27. Mie, G. (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330(3), 377–445.
    [Google Scholar]
  28. Moran, M.L., Greenfield, R.J. & Arcone, S.A. (2003) Modelling GPR radiation and reflection characteristics for a complex temperate glacier bed. Geophysics, 68(2), 559–565. https://doi.org/10.1190/1.1567225
    [Google Scholar]
  29. Naval, V.S., Santos‐Assunçao, S. & Pérez‐Gracia, V. (2018) GPR clutter amplitude processing to detect shallow geological targets. Remote Sensing, 10, 88. https://doi.org/10.3390/rs10010088
    [Google Scholar]
  30. Öztürk, C. & Drahor, M.G. (2010) Synthetic GPR modelling studies on shallow geological properties and its comparison with the real data. In: Proceedings of the 13th International Conference on Ground Penetrating Radar, Lecce, Italy. Piscataway, NJ, IEEE. pp. 1—4. https://doi.org/10.1109/ICGPR.2010.5550215
  31. Pajewski, L., Solla, M. & Küçükdemirci, M. (2017) Ground‐penetrating radar for archaeology and cultural‐heritage diagnostics activities carried out in COST action TU1208. In: Nondestructive techniques for the assessment and preservation of historic structures, 1st edition. Boca Raton, FL: CRC Press.
    [Google Scholar]
  32. Peplinski, N.R., Ulaby, F.T. & Dobson, M.C. (1995) Dielectric properties of soils in the 0.3–1.3‐GHz range. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 803–807. https://doi.org/10.1109/36.387598
    [Google Scholar]
  33. Pettersson, R., Jansson, P., Huwald, H. & Blatter, H. (2007), Spatial pattern and stability of the cold surface layer of Storglaciären, Sweden. Journal of Glaciology, 53(180), 99–109. https://doi.org/10.3189/172756507781833974
    [Google Scholar]
  34. Rayleigh, L. (1881) On the electromagnetic theory of light. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12(73), 81–101. https://doi.org/10.1080/14786448108627074
    [Google Scholar]
  35. Reinardy, B.T.I., Booth, A.D., Hughes, A.L.C., Boston, C.M., Åkesson, H., Bakke, J. et al. (2019) Pervasive cold ice within a temperate glacier – implications for glacier thermal regimes, sediment transport and foreland geomorphology. The Cryosphere, 13, 827–843. https://doi.org/10.5194/tc‐13‐827‐2019
    [Google Scholar]
  36. Roncoroni, G., Fortini, C., Bortolussi, L., Bienati, N. & Pipan, M. (2021) Synthetic seismic data generation with deep learning. Journal of Applied Geophysics, 190, 104347. https://doi.org/10.1016/j.jappgeo.2021.104347
    [Google Scholar]
  37. Roncoroni, G., Forte, E., Bortolussi, L. & Pipan, M. (2022) Efficient extraction of seismic reflection with deep learning. Computers & Geosciences, 166, 105190. https://doi.org/10.1016/j.cageo.2022.105190
    [Google Scholar]
  38. Santin, I., Roncoroni, G., Forte, E. & Pipan, M. (2022) GPR inversion and modelling for glacial internal debris estimation and characterization. In: Proceedings of the 19th International Conference on Ground Penetrating Radar (SEG Global Meeting Abstracts, GPR 2022), 12–17 June 2022, Golden, CO. Tulsa, OK, SEG. pp. 39–42. https://doi.org/10.1190/gpr2022‐064.1
  39. Santin, I., Forte, E., Nicora, M., Ponti, S. & Guglielmin, M. (2023) Where does a glacier end? Integrated geophysical, geomorphological and photogrammetric measurements to image geometry and ice facies distribution. Catena, 225, 107016. https://doi.org/10.1016/j.catena.2023.107016
    [Google Scholar]
  40. Schennen, S., Wetterich, S., Schirrmeister, L., Schwamborn, G. & Tronicke, J. (2022) Seasonal impact on 3D GPR performance for surveying Yedoma ice complex deposits. Frontiers in Earth Science, 10, 741524. https://doi.org/10.3389/feart.2022.741524
    [Google Scholar]
  41. Tarca, G. & Guglielmin, M. (2022) Evolution of the sparse debris cover during the ablation season at two small Alpine glaciers (Gran Zebrù and Sforzellina, Ortles‐Cevedale group). Geomorphology, 409, 108268. https://doi.org/10.1016/j.geomorph.2022.108268
    [Google Scholar]
  42. Tsang, L., Kong, J.A. & Ding, K. (2000) Scattering of electromagnetic waves: theories and applications. Hoboken, NJ: John Wiley & Sons, Inc.
    [Google Scholar]
  43. Warren, C., Giannopoulos, A. & Giannakis, I. (2016) gprMax: open source software to simulate electromagnetic wave propagation for ground penetrating radar. Computer Physics Communications, 209, 163–170. https://doi.org/10.1016/j.cpc.2016.08.020
    [Google Scholar]
  44. Warren, C., Giannopoulos, A., Gray, A., Giannakis, I., Patterson, A., Wetter, L & Hamrah, A. (2018) A CUDA‐based GPU engine for gprMax: open source FDTD electromagnetic simulation software. Computer Physics Communications, 237, 208–218. https://doi.org/10.1016/j.cpc.2018.11.007
    [Google Scholar]
  45. Winter, K., Woodward, J., Ross, N., Dunning, S.A., Hein, A.S., Westoby, M.J., et al. (2019), Radar‐detected englacial debris in the West Antarctic ice sheet. Geophysical Research Letters, 46(17–18), 10454–10462. https://doi.org/10.1029/2019gl084012
    [Google Scholar]
/content/journals/10.1002/nsg.12274
Loading
/content/journals/10.1002/nsg.12274
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): dielectric properties; ground‐penetrating radar; heterogeneity; inversion; modelling

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error