1887
Special Issue: Ground Penetrating Radar (GPR) Numerical Modelling Research and Practice
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

Electromagnetic wave velocity in ground‐penetrating radar (GPR) constant offset data can be estimated via the diffraction hyperbola fitting method. This method is applicable when radargrams contain diffraction events (hyperbolic patterns) caused by scatters in the host smaller or equal to the dominant wavelength. An alternative method for velocity estimation, if no intrusive information is available for a direct correlation, requires the collection of multi‐offset data. The method is quite common for broad geophysical applications; however, it seems not to be fully utilized for engineering applications, such as slabs/walls where thickness estimation and depth of the embedded features are critical requirements for structural assessments. This method would also overcome the limitations in velocity calibration in environments with no hyperbolic signal signatures. The aim of this study is to explore multi‐offset high‐frequency GPR applications, specifically the wide‐angle reflection and refraction method, for structural engineering, to understand whether it is feasible, possible limitations, and advantages. Numerical models reproducing reinforced concrete elements and a cavity wall were analysed to understand the wave behaviour and predict the response prior to testing on real cases. The main purpose is to explore how reinforcing bars can affect the velocity spectra derived from semblance analysis and what the response would be in a case of multi‐layered structure with increasing velocity with depth (cavity wall). The comparison with real cases showed that, despite some intrinsic limitations, high‐frequency multi‐offset approach could be part of standard workflow for all those surveys where no other velocity estimation method is feasible.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12277
2024-04-23
2024-05-22
Loading full text...

Full text loading...

References

  1. Angelis, D., Tsourlos, P., Tsokas, G., Vargemezis, G. & Zacharopoulou, G. (2017) Accessing a historic wall structure using GPR. The case of Heptapyrgion fortress Thessaloniki, Greece. In: Proceedings of the 9th international workshop on advanced ground penetrating radar, June28–30, Edinburgh, United Kingdom: IWAGPR, pp. 7996040. https://doi.org/10.1109/IWAGPR.2017.7996040
  2. Annan, A.P. & Davis, J.L. (1976) Impulse radar sounding in permafrost. Radio Science, 11(4), 383–394. https://doi.org/10.1029/RS011i004p00383
    [Google Scholar]
  3. Annan, A.P. (2005) Ground‐penetrating radar. In: Near‐surface geophysics. Houston, TX: Society of Exploration Geophysics, pp. 357–438. https://doi.org/10.1190/1.9781560801719.ch11
    [Google Scholar]
  4. Angelis, A., Warren, C., Diamanti, N., Martin, J. & Annan, P., (2022) Development of a workflow for processing ground‐penetrating radar data from multiconcurrent receivers. Geophysics, 87(4), WB9–WB18. https://doi.org/10.1190/geo2021‐0376.1
    [Google Scholar]
  5. Bano, M. (2016) Modelling GPR data in the Fourier domain: choice of the radar source. In: Proceedings of the 2016 16th international conference on ground penetrating radar (GPR), 13–16 June, Hong Kong, China: Hong Kong Polytechnic University, pp. 1–6. https://doi.org/10.1109/ICGPR.2016.7572510
  6. Berard, B.A. & Maillol, J.M. (2007) Multi‐offset ground penetrating radar data for improved imaging in areas of lateral complexity—application at a Native American site. Journal of Applied Geophysics, 62, 167–177. https://doi.org/10.1016/j.jappgeo.2006.10.002
    [Google Scholar]
  7. Berenger, J.P. (1994) A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114, 185–200. https://doi.org/10.1006/jcph.1994.1159
    [Google Scholar]
  8. Bohidar, R.N. & Hermance, J.F. (2002) The GPR refraction method. Geophysics, 67(5), 1348–1672. https://doi.org/10.1190/1.1512792
    [Google Scholar]
  9. Booth, A.D., Clark, R.A., Hamilton, K. & Murray, T. (2010) Multi‐offset ground penetrating radar methods to image buried foundations of a Medieval Town Wall, Great Yarmouth, UK. Archaeological Prospection, 17, 103–116, https://doi.org/10.1002/arp.377
    [Google Scholar]
  10. Cai, J. & McMechan, G.A. (1995) Ray‐based synthesis of bistatic ground‐penetrating radar profiles. Geophysics, 60, 87–96. https://doi.org/10.1190/1.1443766
    [Google Scholar]
  11. Campo, D. (2019a) Finite difference time domain modelling as support to ground penetrating radar surveys of precast concrete units. Near‐Surface Geophysics, 17, 277–289. https://doi.org/10.1002/nsg.12037
    [Google Scholar]
  12. Campo, D. (2019b) Signal artifacts in GPR engineering surveys. In: 10th international workshop on advanced ground penetrating radar, vol. 2019. The Hague, The Netherlands: European Association of Geoscientists & Engineers, pp. 1–7. https://doi.org/10.3997/2214‐4609.201902570
  13. Campo, D. (2021) On GPR signal polarity reversal. In: Proceedings of 11th international workshop on advanced ground penetrating radar, Valletta, Malta: IWAGPR, pp. 1–6. https://doi.org/10.1109/IWAGPR50767.2021.9843176
  14. Carcione, J.M. (1996) Ground penetrating radar: wave theory and numerical simulation in lossy anisotropic media. Geophysics, 61(6), 1664–1677. https://doi.org/10.1190/1.1444085
    [Google Scholar]
  15. Casper, D.A. & Kung, K.S. (1996) Simulation of ground‐penetrating radar waves in a 2‐D soil model. Geophysics, 61, (4), 1034–1049. https://doi.org/10.1190/1.1444025
    [Google Scholar]
  16. Chudley, R. & Greeno, R. (2016) Building construction handbook, 11th edition, New York: Routledge.
    [Google Scholar]
  17. De Domenico, D., Teramo, A. & Campo, D. (2013) GPR surveys for the characterization of foundation plinths within a seismic vulnerability analysis. Journal of Geophysics and Engineering, 10(3), 034007. https://doi.org/10.1088/1742‐2132/10/3/034007
    [Google Scholar]
  18. Diamanti, N., Giannopoulos, A. & Forde, M. (2008) Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry and bridges. NDT & E International, 41, 354–363. https://doi.org/10.1016/j.ndteint.2008.01.006
    [Google Scholar]
  19. Diamanti, N. & Annan, A.P. (2020) GPR air‐waves and survey design. In: 18th international conference on ground penetrating radar, 14–19 June. Golden, CO: Society of Exploration Geophysicists, pp. 455. https://doi.org/10.1190/gpr2020‐062.1
  20. Diamanti, N., Annan, A.P. & Vargemezis, G. (2022) Phantom subsurface targets in ground‐penetrating radar data. Geophysics, 87(4), 1–10. https://doi.org/10.1190/geo2021‐0692.1
    [Google Scholar]
  21. Dix, C.H. (1955) Seismic velocities from surface measurements. Geophysics, 20(1), 68–86. https://doi.org/10.1190/1.1438126
    [Google Scholar]
  22. Fa, W. (2013) Simulation of ground penetrating radar (GPR) study of the subsurface structure of the moon. Journal of Applied Geophysics, 99, 98–108. https://doi.org/10.1016/j.jappgeo.2013.08.002
    [Google Scholar]
  23. Fisher, E., McMechan, G.A. & Annan, A.P. (1992) Acquisition and processing of wide‐aperture ground‐penetrating radar data. Geophysics, 57, (3), 495–504. https://doi.org/10.1190/1.1443265
    [Google Scholar]
  24. Forte, E. & Pipan, M. (2017) Review of multi‐offset GPR applications: data acquisition, processing and analysis. Signal Processing, 132, 210–220. https://doi.org/10.1016/j.sigpro.2016.04.011
    [Google Scholar]
  25. Giannakis, I., Giannopoulos, A. & Warren, C. (2021) A machine learning scheme for estimating the diameter of reinforcing bars using ground penetrating radar. IEEE Geoscience and Remote Sensing Letters, 8, (3), 461–465. https://doi.org/10.1109/LGRS.2020.2977505
    [Google Scholar]
  26. Grasmueck, M., Weger, R. & Horstmeyer, H. (2005) Full‐resolution 3D GPR imaging. Geophysics, 70(1), K12–K19. https://doi.org/10.1190/1.1852780
    [Google Scholar]
  27. Greaves, R.J., Lesmes, D.P., Lee, J.M. & Toksöz, M.N. (1996) Velocity variations and water content estimated from multi‐offset, ground‐penetrating radar. Geophysics, 61(3), 683–695. https://doi.org/10.1190/1.1443996
    [Google Scholar]
  28. Goodman, D. (1994) Ground‐penetrating radar simulation in engineering and archaeology. Geophysics, 59, 224–232. https://doi.org/10.1190/1.1443584
    [Google Scholar]
  29. Hamrouche, R., Klysz, G., Balayssac, J., Laurens, S., Rhazi, J., Ballivy, G. & Arliguie, G. (2009) Numerical modeling of ground penetrating radar (GPR) for investigation of jointing defects in brick masonry structures. In: 7th International symposium on nondestructive testing in civil engineering, 30 June–3 July 2009, Nantes, France. e‐Journal of Nondestructive Testing, 14(7), https://www.ndt.net/?id=7762
    [Google Scholar]
  30. Kunz, K.S. & Luebbers, R.J. (1993) The finite difference time domain method for electromagnetics. Boca Raton, FL: CRC Press.
    [Google Scholar]
  31. Liu, H., Xing, B., Wang, H., Cui, J. & Spencer, B.F. (2019) Simulation of ground penetrating radar on dispersive media by a finite element time domain algorithm. Journal of Applied Geophysics, 170, 103821https://doi.org/10.1016/j.jappgeo.2019.103821
    [Google Scholar]
  32. Liu, H. & Sato, M. (2014) In situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array. NDT & E International, 64, 65–71. https://doi.org/10.1016/j.ndteint.2014.03.001
    [Google Scholar]
  33. Lui, Q.H. & Fan, G. (1999) Simulations of GPR in dispersive media using a frequency‐dependent PSTD algorithm. IEEE Transactions on Geoscience and Remote Sensing, 37, 2317–2324. https://doi.org/10.1109/36.789628
    [Google Scholar]
  34. Lu, T., Cai, W. & Zhang, P. (2005) Discontinuous galerkin time‐domain method for GPR simulation in dispersive media. IEEE Transactions on Geoscience and Remote Sensing, 43, 72–80. https://doi.org/10.1109/TGRS.2004.838350
    [Google Scholar]
  35. Neal, A. (2004) Ground‐penetrating radar and its use in sedimentology: principle, problems and progress. Earth Science Reviews, 66, (3–4), 261–300. https://doi.org/10.1016/j.earscirev.2004.01.004
    [Google Scholar]
  36. Patsia, O., Giannopoulos, A. & Giannakis, I. (2021a) A digital twin of the GSSI 2000 MHz palm antenna developed using multi‐parametric optimisation. In: 11th international workshop on advanced ground penetrating radar, IWAGPR 2021, Valletta, Malta: IEEE, pp. 1–5. https://doi.org/10.1109/IWAGPR50767.2021.9843157
  37. Patsia, O., Giannopoulos, A. & Giannakis, I. (2021b) Full waveform inversion of common offset GPR data using a fast deep learning based forward solver. In: 11th International workshop on advanced ground penetrating radar, IWAGPR 2021, Valletta, Malta: IEEE, pp. 1–4. https://doi.org/10.1109/IWAGPR50767.2021.9843142
  38. Pasternak, M., Kedzierawski, R. & Pietrasiński, J. (2011) Finite element method application for simulation of ground penetrating radar response. In: 15th International conference on computational methods and experimental measurements, vol. 51. Ashurst Lodge, UK: WIT Press, pp. 445–451. https://doi.org/10.2495/CMEM110391
  39. Pipan, M., Baradello, L., Forte, E., Prizzon, A. & Finetti, I., (1999) 2D and 3D processing and interpretation of a multi‐fold ground penetrating radar data: a case history from an archaeological site. Journal of Applied Geophysics, 41, 271–292. https://doi.org/10.1016/S0926‐9851(98)00047‐0
    [Google Scholar]
  40. Pipan, M., Baradello, L., Forte, E., Finetti, I. (2001) Ground penetrating radar study of iron age tombs in south‐eastern Kazakhstan. Archaeological Prospection, 8, 141–155. https://doi.org/10.1002/arp.162
    [Google Scholar]
  41. Pipan, M., Forte, E., Guangyou, F. & Finetti, I. (2003) High resolution GPR imaging and joint characterization in limestone. Near Surface Geophysics, 1(1), 39–55. https://doi.org/10.3997/1873‐0604.2002006
    [Google Scholar]
  42. Powers, M.H. & Olhoeft, G.R. (1994) Modelling dispersive ground penetrating radar data. In: Proceedings of the 5th international conference on ground‐penetrating radar, Waterloo, Ontario: European Association of Geoscientists & Engineers, pp. 173–183. https://doi.org/10.3997/2214‐4609‐pdb.300.14
  43. Solla, M., Lorenzo, H., Novo, A. & Riveiro, B. (2011a) Evaluation of ancient structures by GPR (ground penetrating radar): the arch bridges of Galicia (Spain). Scientific Research and Essays, 6, 1877–1884. https://doi.org/10.1002/arp.390
    [Google Scholar]
  44. Solla, M., Lorenzo, H., Rial, F.I. & Novo, A. (2011b) GPR evaluation of the Roman masonry arch bridge of Lugo (Spain). NDT&E International, 44, 8–12. https://doi.org/10.1016/j.ndteint.2010.08.004
    [Google Scholar]
  45. Solla, M., Lorenzo, H., Novo, A. & Caamano, J.C. (2012) Structural analysis of the Roman Bibei bridge (Spain) based on GPR data and numerical modelling. Automation in Construction, 22, 334–339. https://doi.org/10.1016/j.autcon.2011.09.010
    [Google Scholar]
  46. Utsi, E., (2017) Ground penetrating radar theory and practise, Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  47. Warren, C. & Giannopoulos, A. (2008) Numerical modelling of commercial GPR antennas. In: 21st EEGS symposium on the application of geophysics to engineering and environmental problems, Philadelphia, USA: European Association of Geoscientists & Engineers, pp. cp–177–00135. https://doi.org/10.3997/2214‐4609‐pdb.177.195
  48. Warren, C. & Giannopoulos, A. (2011) Creating finite‐difference time‐domain models of commercial ground‐penetrating radar antennas using Taguchi's optimization method. Geophysics, 76(2), G37–G47. https://doi.org/10.1190/1.3548506
    [Google Scholar]
  49. Warren, C., Giannopoulos, A. & Giannakis, I. (2016) GprMax: open‐source software to simulate electromagnetic wave propagation for ground penetrating radar. Computer Physics Communications, 209, 163–170, https://doi.org/10.1016/j.cpc.2016.08.020
    [Google Scholar]
  50. Yee, K.S. (1966) Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302–307. https://doi.org/10.1109/TAP.1966.1138693
    [Google Scholar]
  51. Yilmaz, O. (2000) Seismic data analysis—processing, inversion, and interpretation of seismic data. Houston, TX: SEG.
    [Google Scholar]
  52. Zhang, J., Yang, G. & Li, F. (2006) Ray tracing method for ground penetrating radar waves. In: 7th International symposium on antennas, propagation & EM theory, Guilin, China, Valletta, Malta: IEEE, pp. 1–4. https://doi.org/10.1109/ISAPE.2006.353592
  53. Zeng, X., McMechan, G.A.Cai, J. & Chen, H.W. (1995) Comparison of ray and Fourier methods for modeling monostatic ground‐penetrating radar profiles. Geophysics, 60, 1727–1734. https://doi.org/10.1190/1.1443905
    [Google Scholar]
/content/journals/10.1002/nsg.12277
Loading
/content/journals/10.1002/nsg.12277
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error