1887
Special Issue: Ground Penetrating Radar (GPR) Numerical Modelling Research and Practice
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

Abstract

Fracture curvature has been observed from the millimetre to the kilometre scales. Nevertheless, characterizing curvature remains challenging due to data sparsity and geometric ambiguities. As a result, most numerical models often assume planar fractures to ease computations. To address this limitation, we present a novel approach for inferring fracture geometry from travel‐time data of electromagnetic or seismic waves. Our model utilizes co‐kriging interpolation of control points in a three‐dimensional surface mesh to simulate fracture curvature effectively, resulting in an unstructured triangular grid. We then refine the fracture surface into a structured grid with equidistant elements so that both small‐scale heterogeneities and large‐scale curvature can be modelled. To constrain the fracture geometry, we perform a deterministic travel‐time inversion to optimally place these control points. We validate our methodology with synthetic data and address its limitations. Finally, we infer the geometry of a large (more than 200 m) fracture observed in single‐hole ground‐penetrating radar field data. The fracture surface closely agrees with borehole televiewer observations and is also constrained far from the boreholes. Our modelling approach can be trivially adapted to multi‐offset ground‐penetrating radar or active seismic data.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12286
2024-04-23
2024-05-22
Loading full text...

Full text loading...

/deliver/fulltext/nsg/22/2/nsg12286.html?itemId=/content/journals/10.1002/nsg.12286&mimeType=html&fmt=ahah

References

  1. Acuna, J.A. & Yortsos, Y.C. (1995) Application of fractal geometry to the study of networks of fractures and their pressure transient. Water Resources Research, 31, 527–540.
    [Google Scholar]
  2. Alfeld, P. (1984) A trivariate clough‐tocher scheme for tetrahedral data. Computer Aided Geometric Design, 1, 169–181.
    [Google Scholar]
  3. Berkowitz, B. (2002) Characterizing flow and transport in fractured geological media: a review. Advances in Water Resources, 25, 861–884.
    [Google Scholar]
  4. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P. & Berkowitz, B. (2001) Scaling of fracture systems in geological media. Reviews of Geophysics, 39, 347–383.
    [Google Scholar]
  5. Brown, S.R. & Scholz, C.H. (1985) Broad bandwidth study of the topography of natural rock surfaces. Journal of Geophysical Research, 90, 12575.
    [Google Scholar]
  6. Calcagno, P., Chilès, J.‐P., Courrioux, G. & Guillen, A. (2008) Geological modelling from field data and geological knowledge ‐ Part I. Modelling method coupling 3D potential‐field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171, 147–157.
    [Google Scholar]
  7. Caumon, G., Collon‐Drouaillet, P., Le Carlier de Veslud, C., Viseur, S. & Sausse, J. (2009) Surface‐based 3D modeling of geological structures. Mathematical Geosciences, 41, 927–945.
    [Google Scholar]
  8. Chilès, J., Aug, C., Guillen, A. & Lees, T. (2007) Modelling the geometry of geological units and its uncertainty in 3D from structural data: the potential‐field method. Orebody Modelling and Strategic Mine Planning, 14, 329–336.
    [Google Scholar]
  9. Day‐Lewis, F.D., Slater, L.D., Robinson, J., Johnson, C.D., Terry, N. & Werkema, D. (2017) An overview of geophysical technologies appropriate for characterization and monitoring at fractured‐rock sites. Journal of Environmental Management, 204, 709–720.
    [Google Scholar]
  10. Deng, H. & Spycher, N. (2019) Modeling reactive transport processes in fractures. Reviews in Mineralogy and Geochemistry, 85, 49–74.
    [Google Scholar]
  11. Dorn, C., Linde, N., Doetsch, J., Borgne, T.L. & Bour, O. (2012) Fracture imaging within a granitic rock aquifer using multiple‐offset single‐hole and cross‐hole GPR reflection data. Journal of Applied Geophysics, 78, 123–132.
    [Google Scholar]
  12. Engelder, T. (1987) Joints and shear fractures in rock. In: Atkinson, B.K. (ed) Fracture mechanics of rock. London: Academic Press, pp. 27–69.
    [Google Scholar]
  13. Escallon, D., Shakas, A. & Maurer, H. (2023) FracWave. Zenodo. Available from: https://doi.org/10.5281/zenodo.7898534
  14. Fan, T. & Zhang, G. (2014) Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures. Energy, 74, 164–173.
    [Google Scholar]
  15. Friedman, M. (1975) Fracture in rock. Reviews of Geophysics, 13, 352.
    [Google Scholar]
  16. Gale, J.F., Laubach, S.E., Olson, J.E., Eichhuble, P. & Fall, A. (2014) Natural fractures in shale: a review and new observations. AAPG Bulletin, 98, 2165–2216.
    [Google Scholar]
  17. Ghoochaninejad, H.Z., Asef, M.R. & Moallemi, S.A. (2018) Estimation of fracture aperture from petrophysical logs using teaching‐learning‐based optimization algorithm into a fuzzy inference system. Journal of Petroleum Exploration and Production Technology, 8, 143–154.
    [Google Scholar]
  18. Giertzuch, P.‐L., Doetsch, J., Shakas, A., Jalali, M., Brixel, B. & Maurer, H. (2021) Four‐dimensional tracer flow reconstruction in fractured rock through borehole ground‐penetrating radar (GPR) monitoring. Solid Earth, 12, 1497–1513.
    [Google Scholar]
  19. Glover, P. (2015) Geophysical properties of the near surface earth: electrical properties. In: Treatise on geophysics. Amsterdam: Elsevier, pp. 89–137.
    [Google Scholar]
  20. Grasmueck, M. (1996) 3‐D ground‐penetrating radar applied to fracture imaging in gneiss. Geophysics, 61, 1050–1064.
    [Google Scholar]
  21. Huajian, G. & Cheng‐Hsin, C. (1992) Slightly curved or kinked cracks in anisotropic elastic solids. International Journal of Solids and Structures, 29, 947–972.
    [Google Scholar]
  22. Huang, J.‐W. & Bellefleur, G. (2012) Joint transmission and reflection traveltime tomography using the fast sweeping method and the adjoint‐state technique. Geophysical Journal International, 188, 570–582.
    [Google Scholar]
  23. Jing, L. & Stephansson, O. (2007) Discrete fracture network (DFN) method. In Jing, L. & Stephansson, O. (Eds.) Fundamentals of discrete element methods for rock engineering, volume 85 of Developments in Geotechnical Engineering. Amsterdam: Elsevier, pp. 365–398.
    [Google Scholar]
  24. Keller, F. & Schneider, T.R. (1982) Geologie und geotechnik. Schweizer Ingenieur und Architekt, 100, 512–520.
    [Google Scholar]
  25. Lajaunie, C., Courrioux, G. & Manuel, L. (1997) Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation. Mathematical Geology, 29, 571–584.
    [Google Scholar]
  26. Laubach, S.E., Lander, R.H., Criscenti, L.J., Anovitz, L.M., Urai, J.L., Pollyea, R.M., Hooker, J.N., Narr, W., Evans, M.A., Kerisit, S.N., Olson, J.E., Dewers, T., Fisher, D., Bodnar, R., Evans, B., Dove, P., Bonnell, L.M., Marder, M.P. & Pyrak‐Nolte, L. (2019) The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Reviews of Geophysics, 57, 1065–1111.
    [Google Scholar]
  27. Lei, Q., Latham, J.P. & Tsang, C.F. (2017) The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85, 151–176.
    [Google Scholar]
  28. Liu, L. (2006) Fracture characterization using borehole radar: numerical modeling. Water, Air, & Soil Pollution: Focus, 6, 17–34.
    [Google Scholar]
  29. Long, J.C.S. & Billaux, D.M. (1987) From field data to fracture network modeling: an example incorporating spatial structure. Water Resources Research, 23, 1201–1216.
    [Google Scholar]
  30. Long, J.C.S., Remer, J.S., Wilson, C.R. & Witherspoon, P.A. (1982) Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18(3), 645–658.
    [Google Scholar]
  31. Longoni, L., Arosio, D., Scaioni, M., Papini, M., Zanzi, L., Roncella, R. & Brambilla, D. (2012) Surface and subsurface non‐invasive investigations to improve the characterization of a fractured rock mass. Journal of Geophysics and Engineering, 9, 461–472.
    [Google Scholar]
  32. Lorensen, W.E. & Cline, H.E. (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21, 163–169.
    [Google Scholar]
  33. Lubbe, R. & Worthington, M. (2006) A field investigation of fracture compliance. Geophysical Prospecting, 54, 319–331.
    [Google Scholar]
  34. Ma, X., Hertrich, M., Amann, F., Bröker, K., Doonechaly, N.G., Gischig, V., Hochreutener, R., Kästli, P., Krietsch, H., Marti, M., Nägeli, B., Nejati, M., Obermann, A., Plenkers, K., Rinaldi, A.P., Shakas, A., Villiger, L., Wenning, Q., Zappone, A., Bethmann, F., Castilla, R., Seberto, F., Meier, P., Driesner, T., Loew, S., Maurer, H., Saar, M.O., Wiemer, S. & Giardini, D. (2022) Multi‐disciplinary characterizations of the BedrettoLab ‐ a new underground geoscience research facility. Solid Earth, 13, 301–322.
    [Google Scholar]
  35. Maurer, H. & Boerner, D.E. (1998) Optimized and robust experimental design: a non‐linear application to EM sounding. Geophysical Journal International, 132, 458–468.
    [Google Scholar]
  36. Mhamdi, H.S., Raji, M., Maimouni, S. & Oukassou, M. (2017) Fractures network mapping using remote sensing in the Paleozoic massif of Tichka (Western High Atlas, Morocco). Arabian Journal of Geosciences, 10, 125.
    [Google Scholar]
  37. Molnar, P., Anderson, R.S. & Anderson, S.P. (2007) Tectonics, fracturing of rock, and erosion. Journal of Geophysical Research, 112, F03014.
    [Google Scholar]
  38. Molron, J., Linde, N., Baron, L., Selroos, J.‐O., Darcel, C. & Davy, P. (2020) Which fractures are imaged with ground penetrating radar? Results from an experiment in the Äspö Hardrock Laboratory, Sweden. Engineering Geology, 273, 105674.
    [Google Scholar]
  39. Musy, M., Escallon, D., Shakas, A. & Maurer, H. (2019) vedo, a Python module for scientific analysis and visualization of 3D objects and pointclouds [Computer Software]. Zenodo. https://doi.org/10.5281/zenodo.2561401
  40. Neuman, S.P. (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeology Journal, 13, 124–147.
    [Google Scholar]
  41. Olsson, O., Falk, L., Forslund, O., Lundmark, L. & Sandberg, E. (1992) Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock. Geophysical Prospecting, 40, 109–142.
    [Google Scholar]
  42. Poon, C.Y., Sayles, R.S. & Jones, T.A. (1992) Surface measurement and fractal characterization of naturally fractured rocks. Journal of Physics D: Applied Physics, 25, 1269–1275.
    [Google Scholar]
  43. Rawlinson, N. & Sambridge, M. (2004) Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics, 69, 1338–1350.
    [Google Scholar]
  44. Schmittbuhl, J., Schmitt, F. & Scholz, C. (1995) Scaling invariance of crack surfaces. Journal of Geophysical Research: Solid Earth, 100, 5953–5973.
    [Google Scholar]
  45. Seeburger, D.A. & Zoback, M.D. (1982) The distribution of natural fractures and joints at depth in crystalline rock. Journal of Geophysical Research: Solid Earth, 87, 5517–5534.
    [Google Scholar]
  46. Shakas, A. et al. (n.d.) Probabilistic inference of fracture networks through multi‐scale geophysical data. Manuscript in preparation.
  47. Shakas, A. & Linde, N. (2015) Effective modeling of ground penetrating radar in fractured media using analytic solutions for propagation, thin‐bed interaction and dipolar scattering. Journal of Applied Geophysics, 116.
    [Google Scholar]
  48. Shakas, A. & Linde, N. (2017) Apparent apertures from ground penetrating radar data and their relation to heterogeneous aperture fields. Geophysical Journal International, 209, 1418–1430.
    [Google Scholar]
  49. Shakas, A., Maurer, H., Giertzuch, P., Hertrich, M., Giardini, D., Serbeto, F. & Meier, P. (2020) Permeability enhancement from a hydraulic stimulation imaged with ground penetrating radar. Geophysical Research Letters, 47.
  50. Sides, E.J. (1997) Geological modelling of mineral deposits for prediction in mining. Geologische Rundschau, 86, 342–353.
    [Google Scholar]
  51. Singhal, B.B.S. & Gupta, R.P. (2010) Fractures and discontinuities. In: Applied hydrogeology of fractured rocks: second edition. Dordrecht: Springer Netherlands, pp. 13–33.
    [Google Scholar]
  52. Slob, E., Sato, M. & Olhoeft, G. (2010) Surface and borehole ground‐penetrating‐radar developments. Geophysics, 75, 75A103–75A120.
    [Google Scholar]
  53. Smith, M.B. & Montgomery, C. (2015) Hydraulic fracturing. Boca Raton, FL: CRC Press.
    [Google Scholar]
  54. Sullivan, C.B. & Kaszynski, A. (2019) PyVista: 3D plotting and mesh analysis through a streamlined interface for the visualization toolkit (VTK). Journal of Open Source Software, 4(37), 1450.
    [Google Scholar]
  55. Tarantola, A. (2005) Inverse problem theory and methods for model parameter estimation. Philadelphia, PA: Society for Industrial and Applied Mathematics.
    [Google Scholar]
  56. Thomas, A.L. & Pollard, D.D. (1993) The geometry of echelon fractures in rock: implications from laboratory and numerical experiments. Journal of Structural Geology, 15, 323–334.
    [Google Scholar]
  57. Varga, M.D.L., Schaaf, A. & Wellmann, F. (2019) Gempy 1.0: open‐source stochastic geological modeling and inversion. Geoscientific Model Development, 12, 1–32.
    [Google Scholar]
  58. Virtanen, P., Gommers, R. & et al. (2020) Scipy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261–272.
    [Google Scholar]
  59. von Harten, J., de la Varga, M., Hillier, M. & Wellmann, F. (2021) Informed local smoothing in 3D implicit geological modeling. Minerals, 11, 1281.
    [Google Scholar]
  60. Wayahdi, M.R., Ginting, S.H.N. & Syahputra, D. (2021) Greedy, A‐Star, and Dijkstra's algorithms in finding shortest path. International Journal of Advances in Data and Information Systems, 2, 45–52.
    [Google Scholar]
  61. Welch, M.J., Luthje, M. & Glad, A.C. (2019) Influence of fracture nucleation and propagation rates on fracture geometry: insights from geomechanical modelling. Petroleum Geoscience, 25, 470–489.
    [Google Scholar]
  62. Wellmann, F. & Caumon, G. (2018) 3‐D Structural geological models: concepts, methods, and uncertainties. Advances in Geophysics, 59, 1–121.
    [Google Scholar]
  63. Wellmann, F., Horowitz, F.G., Schill, E. & Regenauer‐Lieb, K. (2010) Towards incorporating uncertainty of structural data in 3D geological inversion. Tectonophysics, 490, 141–151.
    [Google Scholar]
  64. Zeng, Q. & Yao, J. (2016) Numerical simulation of fracture network generation in naturally fractured reservoirs. Journal of Natural Gas Science and Engineering, 30, 430–443.
    [Google Scholar]
  65. Zhang, T. (2011) Adaptive forward‐backward greedy algorithm for learning sparse representations. IEEE Transactions on Information Theory, 57, 4689–4708.
    [Google Scholar]
/content/journals/10.1002/nsg.12286
Loading
/content/journals/10.1002/nsg.12286
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): faults; fracture; imaging; modelling; travel‐time

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error