1887
Volume 22, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

There are various methods suggested for modelling the geometry of sedimentary basins by using gravity anomalies in the literature. When dealing with datasets that are non‐uniformly distributed across a study area, the choice of modelling method can significantly impact data reliability and computational resource usage. In this study, we present a gravity modelling approach utilizing prismatic vertical polyhedra. First, we summarize the requirement of such a method by highlighting limitations associated with a commonly employed modelling method that uses rectangular grid‐following vertical prisms for modelling. By contrast, we propose a method that adapts a polygonal mesh to the distribution of input gravity data points, each polygonal mesh cell containing one data point and using polygonal grid‐following vertical prisms for gravity modelling. To validate our method, we conduct tests using two synthetically constructed subsurface models – one featuring a normal fault and the other a deep basin. These are used to generate synthetic gravity observation data at irregularly spaced points that broadly follow the geology. The data are then inverted for obtaining subsurface structures by modelling with (a) rectangular prisms on a regular grid and (b) with our polygonal prisms on the tessellated grid. The inversion process involves calculating the heights of the prisms in both approaches, assuming a constant density contrast. The comparative analysis demonstrates the superior effectiveness of our approach (b). Finally, we apply our newly developed method to real gravity data recently collected from Gezin province, situated in the north‐eastern region of the Lake Hazar pull‐apart basin in Eastern Turkey. Our modelling results reveal previously underestimated basin geometry, suggesting the presence of an additional, previously unidentified fault to the east of Gezin, which forms the southern boundary of the basin.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12297
2024-05-21
2024-06-20
Loading full text...

Full text loading...

References

  1. Ahuja, N. (1982) Dot pattern processing using Voronoi neighborhoods. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI‐4, 336–343. https://doi.org/10.1109/TPAMI.1982.4767255
    [Google Scholar]
  2. Aksoy, E., İnceöz, M. & Koçyiğit, A. (2007) Lake Hazar basin: a negative flower structure on the East Anatolian Fault System (EAFS), SE Turkey. Turkish Journal of Earth Sciences, 16, 319–338.
    [Google Scholar]
  3. Aktuğ, B., Özener, H., Doğru, A., Sabuncu, A., Turgut, B., Halıcıoglu, K., Yılmaz, O. & Havazlı, E. (2016) Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. Journal of Geodynamics, 94–95, 1–12. https://doi.org/10.1016/j.jog.2016.01.001
    [Google Scholar]
  4. Allen, C.R. (1969) Active faulting in Northern Turkey. In: Division of geological and planetary sciences contribution. Pasadena, US: California Institute of Technology, pp. 1577.
    [Google Scholar]
  5. Altınlı, I., Pamir, H. & Erentöz, C. (1963) 1:500000 Ölçekli Türkiye Jeoloji Haritası. MTA.
  6. Ambraseys, N. & Jackson, J.A. (1998) Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophysical Journal International, 133, 390–406. https://doi.org/10.1046/j.1365‐246X.1998.00508.x
    [Google Scholar]
  7. Ambraseys, N.N. (1989) Temporary seismic quiescence: SE Turkey. Geophysical Journal International, 96, 311–331. https://doi.org/10.1111/j.1365‐246X.1989.tb04453.x
    [Google Scholar]
  8. Arpat, E. & Şaroğlu, F. (1972) The East Anatolian Fault System; thoughts on its development. Maden Tetkik ve Arama Dergisi, 78, 1–12.
    [Google Scholar]
  9. Asano, T., Bhattacharya, B., Keil, M. & Yao, F. (1988) Clustering algorithms based on minimum and maximum spanning trees. In: Proceedings of the 4th annual symposium on computational geometry, SCG. New York, ACM. pp. 252–257. https://doi.org/10.1145/73393.73419
  10. Aurenhammer, F. (1991) Voronoi diagramsa survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23, 345–405. https://doi.org/10.1145/116873.116880
    [Google Scholar]
  11. Aydın, N.G. & İşseven, T. (2021) GravPack: a MATLAB‐based gravity data processing package. Arabian Journal of Geosciences, 14, 268. https://doi.org/10.1007/s12517‐021‐06656‐9
    [Google Scholar]
  12. Bayrak, E., Yılmaz, Ş., Softa, M., Türker, T. & Bayrak, Y. (2015) Earthquake hazard analysis for East Anatolian Fault Zone. Turkey. Natural Hazards, 76, 1063–1077. https://doi.org/10.1007/S11069‐014‐1541‐5
    [Google Scholar]
  13. Çetin, H., Güneyli, H. & Mayer, L. (2003) Paleoseismology of the Palu–Lake Hazar segment of the East Anatolian Fault Zone. Turkey. Tectonophysics, 374, 163–197. https://doi.org/10.1016/j.tecto.2003.08.003
    [Google Scholar]
  14. Cordell, L. & Henderson, R.G. (1968) Iterative three‐dimensional solution of gravity anomaly data using a digital computer. Geophysics, 33, 596–601. https://doi.org/10.1190/1.1439955
    [Google Scholar]
  15. Delaunay, B. (1934) Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7, 1–2.
    [Google Scholar]
  16. Delaunay, B. (1932) Neue Darstellung der geometrischen Kristallographie. Zeitschrift für Kristallographie, 84, 109–149. https://doi.org/10.1524/ZKRI.1933.84.1.109
    [Google Scholar]
  17. Dunne, L.A. & Hempton, M.R. (1984) Deltaic sedimentation in the Lake Hazar pull‐apart basin, south‐eastern Turkey. Sedimentology, 31, 401–412. https://doi.org/10.1111/J.1365‐3091.1984.TB00868.X
    [Google Scholar]
  18. Freund, R. (1971) The Hope Fault. A strike slip fault in New Zealand. New Zealand Geological Survey Bulletin, 86, 49.
    [Google Scholar]
  19. Garcia Moreno, D., Hubert‐Ferrari, A., Moernaut, J., Fraser, J.G., Boes, X., Van Daele, M., Avsar, U., Çağatay, N. & De Batist, M. (2011) Structure and recent evolution of the Hazar basin: a strike‐slip basin on the East Anatolian Fault, Eastern Turkey. Basin Research, 23, 191–207. https://doi.org/10.1111/j.1365‐2117.2010.00476.x
    [Google Scholar]
  20. Genç, H.T. (1997) Gravite ve Manyetik Yöntemlerde Modelleme. In: Canıtez, N. (Ed.) Jeofizikte Modelleme. İstanbul, Turkey: Literatür Yayıncılık, pp. 57–84.
    [Google Scholar]
  21. Haskara Rao, D.B., Road, S. & Dhi, D. (1986) Modelling of sedimentary basins from gravity anomalies with variable density contrast. Geophysical Journal International, 84, 207–212. https://doi.org/10.1111/J.1365‐246X.1986.TB04353.X
    [Google Scholar]
  22. Heck, B. & Seitz, K. (2007) A comparison of the tesseroid, prism and point‐mass approaches for mass reductions in gravity field modelling. Journal of Geodynamics, 81, 121–136. https://doi.org/10.1007/S00190‐006‐0094‐0/METRICS
    [Google Scholar]
  23. Heiskanen, W.A. & Moritz, H. (1967) Physical geodesy. Vienna: Springer. https://doi.org/10.1007/978‐3‐211‐33545‐1
    [Google Scholar]
  24. Hempton, M.R. (1980) Structure and morphology of the East Anatolian transform fault zone near Lake Hazar. In: Geological society of America annual meeting. Atlanta, United States of America. p. 445.
    [Google Scholar]
  25. Hempton, M.R. & Dewey, J.F. (1981) Structure and tectonics of the Lake Hazar pull‐apart basin, SE Turkey. Transactions, American Geophysical Union, 62, 1033.
    [Google Scholar]
  26. Hempton, M.R., Dunne, L.A. & Dewey, J.F. (1983) Sedimentation in an active strike‐slip basin, Southeastern Turkey. The Journal of Geology, 91, 401–412. https://doi.org/10.1086/628786
    [Google Scholar]
  27. Holstein, H. (2002a) Gravimagnetic similarity in anomaly formulas for uniform polyhedra. Geophysics, 67(4), 1126–1133. https://doi.org/10.1190/1.1500374
    [Google Scholar]
  28. Holstein, H. (2002b) Invariance in gravimagnetic anomaly formulas for uniform polyhedra. Geophysics, 67(4), 1134–1137. https://doi.org/10.1190/1.1500374
    [Google Scholar]
  29. Jiang, D., Zeng, Z., Zhou, S., Guan, Y., Lin, T. & Lu, R. (2020) Three‐dimensional magnetic inversion based on an adaptive quadtree data compression. Applied Sciences, 10, 7636. https://doi.org/10.3390/app10217636
    [Google Scholar]
  30. Kalmar, J., Papp, G. & Szabo, T. (1995) DTM‐based surface and volume approximation. Geophysical Applications. Computers and Geosciences, 21(2), 245–257. https://doi.org/10.1016/0098‐3004(94)00069‐7
    [Google Scholar]
  31. Leliévre, P.G., Farquharson, C.G. & Hurich, C.A. (2012) Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77(1), K1–K15. https://doi.org/10.1190/GEO2011‐0154.1
    [Google Scholar]
  32. Mann, P., Hempton, M.R., Bradley, D.C. & Burke, K. (1983) Development of pull‐apart basins. The Journal of Geology, 91(5), 529–554. https://doi.org/10.1086/628803
    [Google Scholar]
  33. McKenzie, D. (1972) Active tectonics of the Mediterranean region. Geophysical Journal International, 30, 109–185. https://doi.org/10.1111/j.1365‐246X.1972.tb02351.x
    [Google Scholar]
  34. MTA (General Directorate of Mineral Research and Exploration) . (2012) Bouguer anomaly map of Turkey. MTA.
  35. MTA (General Directorate of Mineral Research and Exploration) . (2002) Geological map of Turkey/Erzurum. MTA.
  36. Muehlberger, W.R. & Gordon, M.B. (1987) Observations on the complexity of the East Anatolian Fault, Turkey. Journal of Structural Geology, 9, 899–903. https://doi.org/10.1016/0191‐8141(87)90091‐5
    [Google Scholar]
  37. Murtagh, F. (1983) A survey of recent advances in hierarchical clustering algorithms. The Computer Journal, 26, 354–359. https://doi.org/10.1093/COMJNL/26.4.354
    [Google Scholar]
  38. Nguyen, V.G. & Rabinowitz, P.D. (1999) Gravity modeling of the Song Hong basin, offshore Vietnam. In: Proceedings of the annual offshore technology conference. Richardson, OnePetro. pp. 145–154. https://doi.org/10.4043/10745‐MS
  39. Perlin, K. (2002) Improving noise. In: SIGGRAPH '02: Proceedings of the 29th annual conference on computer graphics and interactive techniques, July 23–26, 2002. San Antonio, ACM. pp. 681–682.
  40. Plouff, D. (1976) Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41, 727–741. https://doi.org/10.1190/1.1440645
    [Google Scholar]
  41. Ren, Z., Zhong, Y., Chen, C., Tang, J. & Pan, K. (2018) Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order. Geophysics, 83, G1–G13. https://doi.org/10.1190/GEO2017‐0219.1
    [Google Scholar]
  42. Richardson, R.M. & MacInnes, S.C. (1989) The inversion of gravity data into three‐dimensional polyhedral models. Journal of Geophysical Research, 94(B6), 7555–7562. https://doi.org/10.1029/JB094iB06p07555
    [Google Scholar]
  43. Sievers, J. (2023) VoronoiLimit. MATLAB File Exchange. https://uk.mathworks.com/matlabcentral/fileexchange/34428‐voronoilimit‐varargin
  44. Smith, D.A. (2000) The gravitational attraction of any polygonally shaped vertical prism with inclined top and bottom faces. Journal of Geodesy, 74, 414–420. https://doi.org/10.1007/s001900000102
    [Google Scholar]
  45. Şengör, A.M.C., Görür, N. & Şaroğlu, F. (1985) Strike‐slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike‐slip Deformation, Basin Formation, and Sedimentation. Tulsa, US: SEPM, pp. 211–226.. https://doi.org/10.2110/PEC.85.37.0211
    [Google Scholar]
  46. Talwani, M. & Ewing, M. (1960) Rapid computation of gravitational attraction of 3‐dimensional bodies of arbitrary shape. Geophysics, 25, 203–225. https://doi.org/10.1190/1.1438687
    [Google Scholar]
  47. Voronoi, G. (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal fur die Reine und Angewandte Mathematik, 134, 198–287. https://doi.org/10.1515/CRLL.1908.134.198/MACHINEREADABLECITATION/RIS
    [Google Scholar]
  48. Wolfram, S. (1996) The mathematica book. Champaign: Wolfram Media/Cambridge University Press.
    [Google Scholar]
  49. Yamamoto, H. & Doughty, C. (2011) Investigation of gridding effects for numerical simulations of CO2 geologic sequestration. International Journal of Greenhouse Gas Control, 5(4), 975–985. https://doi.org/10.1016/j.ijggc.2011.02.007
    [Google Scholar]
  50. Yan, H. & Weibel, R. (2008) An algorithm for point cluster generalization based on the Voronoi diagram. Computers and Geosciences, 34, 939–954. https://doi.org/10.1016/J.CAGEO.2007.07.008
    [Google Scholar]
  51. Zak, I. & Freund, R. (1981) Asymmetry and basin migration in the dead sea rift. Tectonophysics, 80, 27–38. https://doi.org/10.1016/0040‐1951(81)90140‐2
    [Google Scholar]
/content/journals/10.1002/nsg.12297
Loading
/content/journals/10.1002/nsg.12297
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error