1887
Volume 22, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

This study demonstrates the application of the cross‐gradient joint inversion method to investigate iron mineralization zones within a volcano‐sedimentary environment. The presence of minerals with intense contrasts in density or magnetic susceptibility, such as hematite or magnetite, facilitates modelling the distribution of ore bodies with depth. Our approach involves establishing a unified interpretation of reconstructed density and susceptibility models through both independent and joint inversion with sparsity regularization in conjunction with a petrophysical model resulting from core data. This approach provides an ideal strategy to uncover the realistic geologic setting of iron ore deposits. We initially simulated a synthetic model closely resembling real‐case scenarios to assess the efficacy of the cross‐gradient joint inversion algorithm in comparison to independent inversion. Subsequently, the inversion algorithms were implemented on gravity and magnetic data, collected over an area of 500 × 600 m2 in Shavaz iron‐bearing deposits located in the central Iranian block. The primary iron oxide–apatite type mineralization in the study area is associated with the Nain–Dehshir–Baft fault as a NW–SE trending strike‐slip fault. Although both inversion methods yield satisfactory models, incorporating the cross‐gradient constraint in joint inversion resulted in a more constrained delineation of iron–oxide ore deposits in the fault system. This improvement facilitates the differentiation between hematite and a small percentage of magnetite, providing a more accurate estimation of ore depth. Inversion results suggest that the magnetite mineralization is coated with extensive hematite mineralization and both are positioned relatively within the same depth interval, covered by approximately a 15–25 m sequence of sediments.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12317
2024-09-08
2025-11-08
Loading full text...

Full text loading...

References

  1. Abedi, M. (2020) A focused and constrained 2D inversion of potential field geophysical data through Delaunay triangulation, a case study for iron‐bearing targeting at the Shavaz deposit in Iran. Physics of the Earth and Planetary Interiors, 309, 106604. https://doi.org/10.1016/j.pepi.2020.106604
    [Google Scholar]
  2. Abedi, M. (2022) Cooperative fuzzy‐guided focused inversion for unstructured mesh modeling of potential field geophysics, a case study for imaging an oil‐trapping structure. Acta Geophysica, 70, 2077–2098. https://doi.org/10.1007/s11600‐022‐00857‐w
    [Google Scholar]
  3. Alamdar, K. (2016) Interpretation of the magnetic data from Shavaz iron ore using enhanced local wavenumber (ELW) and comparison with Euler deconvolution method. Arabian Journal of Geosciences, 9, 597. https://doi.org/10.1007/s12517‐016‐2616‐2
    [Google Scholar]
  4. Ardestani, V.E., Fournier, D. & Oldenburg, D.W. (2021) Gravity and magnetic processing and inversion over the Mahallat Geothermal system using open source resources in python. Pure and Applied Geophysics, 178(5), 2171–2190. https://doi.org/10.1007/s00024‐021‐02763‐6
    [Google Scholar]
  5. Astic, T. & Oldenburg, D.W. (2019) A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior. Geophysical Journal International, 219(3), 1989–2012. https://doi.org/10.1093/gji/ggz389
    [Google Scholar]
  6. Beltrão, J.F., Silva, J.B.C. & Costa, J.C. (1991) Robust polynomial fitting method for regional gravity estimation. Geophysics, 56, 80–89. https://doi.org/10.1190/1.1442960
    [Google Scholar]
  7. Berberian, M. & King, G. (1981) Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265. https://doi.org/10.1139/e81‐019
    [Google Scholar]
  8. Blakely, R.J. (1995) Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.
    [Google Scholar]
  9. Capriotti, J., Heagy, L.J. & Soler, S. (2023) Joint inversions with the SimPEG framework. In: SEG technical program expanded abstracts. Houston, SEG. pp. 1678–1682. https://doi.org/10.1190/image2023‐3910791.1
  10. Cockett, R., Kang, S., Heagy, L.J., Pidlisecky, A. & Oldenburg, D.W. (2015) SimPEG: an open‐source framework for simulation and gradient‐based parameter estimation in geophysical applications. Computers & Geosciences, 85(Part A), 142–154. https://doi.org/10.1016/j.cageo.2015.09.015
    [Google Scholar]
  11. Colombo, D. & De Stefano, M. (2007) Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: application to prestack depth imaging. The Leading Edge, 26, 326–331. https://doi.org/10.1190/1.2715057
    [Google Scholar]
  12. Colombo, D., Rovetta, D., Al‐Yousuf, T., Sandoval, E., Turkoglu, E. & McNeice, G. (2020) Joint wavefield inversion: a software platform for multi‐physics data integration problems. In: Paper presented at the fifth international conference on engineering geophysics (ICEG). Chania, ICEG, 21–24.
  13. Danaei, K., Moradzadeh, A., Norouzi, G.H. & Abedi, M. (2023) 3D inversion of magnetic data using Lanczos Bidiagonalization and unstructured element. International Journal of Mining and Geo‐Engineering, 57(1), 89–99. https://doi.org/10.22059/ijmge.2023.351885.595004
    [Google Scholar]
  14. De la Varga, M., Schaaf, A. & Wellmann, F. (2019) GemPy 1.0: open‐source stochastic geological modeling and inversion. Geoscientific Model Development, 12(1), 1–32. https://doi.org/10.5194/gmd‐12‐1‐2019
    [Google Scholar]
  15. Esmailiy, D., Zakizadeh, S., Sepidbar, F., Kanaanian, A. & Niroomand, S. (2016) The shaytor apatite‐magnetite deposit in the Kashmar‐Kerman tectonic zone (Central Iran): a Kiruna‐type iron deposit. Open Journal of Geology, 6, 895–910. https://doi.org/10.4236/ojg.2016.68068
    [Google Scholar]
  16. Forster, H. & Jafarzadeh, A. (1994) The Bafq mining district in Central Iran—a highly mineralized infracambrian volcanic field. Economic Geology, 89, 1697–1721. https://doi.org/10.2113/gsecongeo.89.8.1697
    [Google Scholar]
  17. Fournier, D. (2019) Advanced potential field data inversion with lp‐norm regularization [PhD Thesis]. Vancouver: The University of British Columbia.
  18. Fournier, D. & Oldenburg, D.W. (2019) Inversion using spatially variable mixed ℓp norms. Geophysical Journal International, 218(1), 268–282. https://doi.org/10.1093/gji/ggz156
    [Google Scholar]
  19. Fregoso, E. & Gallardo, L.A. (2009) Cross‐gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics, 74, L31–L42. https://doi.org/10.1190/1.3119263
    [Google Scholar]
  20. Gallardo, L.A. & Meju, M.A. (2004) Joint two‐dimensional DC resistivity and seismic travel time inversion with cross‐gradients constraints. Journal of Geophysical Research, 109, B03311. https://doi.org/10.1029/2003JB002716
    [Google Scholar]
  21. Gallardo, L.A. & Meju, M.A. (2007) Joint two‐dimensional cross‐gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophysical Journal International, 169(3), 1261–1272. https://doi.org/10.1111/j.1365‐246X.2007.03366.x
    [Google Scholar]
  22. Ghorbani, M. (2013) The economic geology of Iran: mineral deposits and natural resources. Dordrecht: Springer. https://doi.org/10.1007/978‐94‐007‐5625‐0
    [Google Scholar]
  23. Ghorbani, M. (2021) The geology of Iran: tectonic, magmatism and metamorphism. Cham: Springer. https://doi.org/10.1007/978‐3‐030‐71109‐2
    [Google Scholar]
  24. Gross, L. (2019) Weighted cross‐gradient function for joint inversion with the application to regional 3‐D gravity and magnetic anomalies. Geophysical Journal International, 217(3), 2035–2046. https://doi.org/10.1093/gji/ggz134
    [Google Scholar]
  25. Harris, B., Pethick, A., Schaa, R. & Le Van Anh Cuong. (2018) Cooperative inversion: a review. ASEG Extended Abstracts, 2018(1), 1–3. https://doi.org/10.1071/ASEG2018abM1_1F
    [Google Scholar]
  26. Hassanzadeh, J. & Wernicke, B.P. (2016) The Neotethyan Sanandaj‐Sirjan zone of Iran as an archetype for passive margin‐arc transitions. Tectonics, 35, 586–621. https://doi.org/10.1002/2015TC003926
    [Google Scholar]
  27. Heincke, B., Jegen, M., Moorkamp, M., Hobbs, R.W. & Chen, J. (2017) An adaptive coupling strategy for joint inversions that use petrophysical information as constraints. Journal of Applied Geophysics, 136, 279–297. https://doi.org/10.1016/j.jappgeo.2016.10.028
    [Google Scholar]
  28. Hinze, W.J., vonFrese, R.R.B. & Saad, A.H., (2013) Gravity and magnetic exploration, principles, practices, and applications. Cambridge: Cambridge University Press.
    [Google Scholar]
  29. Hu, Y., Wei, X., Wu, X., Sun, J., Chen, J. & Huang, Y. (2023) Deep learning enhanced joint inversion for mineral exploration using airborne geophysics: application in Decorah area. In: SEG technical program expanded abstracts. Houston, SEG. pp. 1117–1121. https://doi.org/10.1190/image2023‐3910948.1
    [Google Scholar]
  30. Janković, S. (1977) The copper deposits and geotectonic setting of the Thethyan Eurasian metallogenic belt. Mineralium Deposita, 12, 37–47. https://doi.org/10.1007/BF00204503
    [Google Scholar]
  31. Joulidehsar, F., Moradzadeh, A. & Doulati Ardejani, F. (2018) An improved 3D joint inversion method of potential field data using cross‐gradient constraint and LSQR method. Pure and Applied Geophysics, 175, 4389–4409. https://doi.org/10.1007/s00024‐018‐1909‐7
    [Google Scholar]
  32. Karimzadeh, A., Abedi, M. & Norouzih, G. (2022) Potential field geophysical data fast imagining versus inverse modeling. Geopersia, 12(1), 153–172. https://doi.org/10.22059/geope.2021.323276.648614
    [Google Scholar]
  33. Koch, K., Wenninger, J., Uhlenbrook, S. & Bonell, M. (2009) Joint interpretation of hydrological and geophysical data: electrical resistivity tomography results from a process hydrological research site in the Black Forest mountains, Germany. Hydrological Processes, 23, 1501–1513. https://doi.org/10.1002/hyp.7275
    [Google Scholar]
  34. Le, C.V.A., Harris, B.D., Pethick, A.M., Takougang, E.M.T. & Howe, B. (2016) Semiautomatic and automatic cooperative inversion of seismic and magnetotelluric data. Surveys in Geophysics, 37(5), 845–896. https://doi.org/10.1007/s10712‐016‐9377‐z
    [Google Scholar]
  35. Li, Y. & Oldenburg, D.W. (1996) 3‐D inversion of magnetic data. Geophysics, 61, 394–408. https://doi.org/10.1190/1.1443968
    [Google Scholar]
  36. Li, Y. & Oldenburg, D.W. (1998) 3‐D inversion of gravity data. Geophysics, 63(1), 109–119. https://doi.org/10.1190/1.1444302
    [Google Scholar]
  37. Liu, S., Wan, X., Jin, S., Jia, B., Xuan, S., Lou, Q. et al. (2023) Fast 3D joint inversion of gravity and magnetic data based on cross gradient constraint. Geodesy and Geodynamics, 14(4), 331–346. https://doi.org/10.1016/j.geog.2022.12.003
    [Google Scholar]
  38. Martyshko, P.S., Ladovskii, I.V. & Tsidaev, A.G. (2010) Construction of regional geophysical models based on the joint interpretation of gravity and seismic data. Izvestiya, Physics of the Solid Earth, 46, 931–942. https://doi.org/10.1134/S1069351310110030
    [Google Scholar]
  39. Menke, W. (1989) Geophysical data analysis: discrete inverse theory. Cambridge: Academic Press, Inc.
    [Google Scholar]
  40. Moazam, S., Aghajani, H. & Nejati Kalate, A. (2022) Improvement of the focusing inversion of gravity data with hybrid conjugate gradient parameter method. Engineering Resources Mineral of Journal, 7(2), 67–81. https://doi.org/10.30479/jmre.2021.14683.1472
    [Google Scholar]
  41. Mohajjel, M., Fergusson, C.L. & Sahandi, M.R. (2003) Cretaceous–tertiary convergence and continental collision, Sanandaj–Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 21(4), 397–412. https://doi.org/10.1016/S1367‐9120(02)00035‐4
    [Google Scholar]
  42. Moorkamp, M., Heincke, B., Jegen, M., Roberts, A.W. & Hobbs, R.W. (2011) A framework for 3‐D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477–493. https://doi.org/10.1111/j.1365‐246X.2010.04856.x
    [Google Scholar]
  43. Moritz, R., Ghazban, F. & Singer, B.S. (2006) Eocene gold ore formation at Muteh, Sanandaj‐Sirjan Tectonic Zone, Western Iran: a result of late‐stage extension and exhumation of metamorphic basement rocks within the Zagros orogen. Economic Geology, 101(8), 1497–1524. https://doi.org/10.2113/gsecongeo.101.8.1497
    [Google Scholar]
  44. Mücke, A. & Cabral, A.R. (2005) Redox and nonredox reactions of magnetite and hematite in rocks. Geochemistry, 65(3), 271–278. https://doi.org/10.1016/j.chemer.2005.01.002
    [Google Scholar]
  45. Nabatian, G.., Rastad, E., Neubauer, F., Honarmand, M. & Ghaderi, M. (2015) Iron and Fe–Mn mineralisation in Iran: implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62(2), 211–241. https://doi.org/10.1080/08120099.2015.1002001
    [Google Scholar]
  46. Nagy, D. (1966) The gravitational attraction of a right rectangular prism. Geophysics, 31, 362–371. https://doi.org/10.1190/1.1439779
    [Google Scholar]
  47. Oldenburg, D.W. & Li, Y. (2005) Inversion for applied geophysics: a tutorial. In: Near‐surface geophysics. Houston: Society of Exploration Geophysicists, pp. 89–150.
    [Google Scholar]
  48. Paasche, H. & Tronicke, J. (2007) Cooperative inversion of 2D geophysical data sets: a zonal approach based on fuzzy c‐means cluster analysis. Geophysics, 72, A35–A39. https://doi.org/10.1190/1.2670341
    [Google Scholar]
  49. Pilkington, M. (1997) 3‐D magnetic imaging using conjugate gradients. Geophysics, 62(4), 1132–1142. https://doi.org/10.1190/1.1444214
    [Google Scholar]
  50. Plouff, D. (1976) Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41, 727–741.
    [Google Scholar]
  51. Rashidifard, M., Giraud, J., Ogarko, V., Jessell, M. & Lindsay, M. (2020) Cooperative inversion of seismic and gravity data using weighted structure‐based constraints. In: NSG2020 3rd conference on geophysics for mineral exploration and mining. Bunnik, European Association of Geoscientists & Engineers. pp. 1–5. https://doi.org/10.3997/2214‐4609.202020042
  52. Rovetta, D. & Colombo, D. (2018) Analysis of inter‐domain coupling constraints for multi‐physics joint inversion. Inverse Problems, 34, 124006. https://doi.org/10.1088/1361‐6420/aadbc4
    [Google Scholar]
  53. Richards, J.P., Wilkinson, D. & Ullrich, T. (2006) Geology of the Sari Gunay epithermal gold deposit, Northwest Iran. Economic Geology, 101(8), 1455–1496. https://doi.org/10.2113/gsecongeo.101.8.1455
    [Google Scholar]
  54. Sepehr, M. & Cosgrove, J.W. (2004) Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum Geology, 21(7), 829–843. https://doi.org/10.1016/j.marpetgeo.2003.07.006
    [Google Scholar]
  55. Sepidbar, F., Karsli, O., Palin, R.M. & Casetta, F. (2021) Cenozoic temporal variation of crustal thickness in the Urumieh‐Dokhtar and Alborz magmatic belts, Iran. Lithos, 400–401, 106401. https://doi.org/10.1016/j.lithos.2021.106401
    [Google Scholar]
  56. Sharma, P.V. (1966) Rapid computation of magnetic anomalies and demagnetization effects caused by bodies of arbitrary shape. Pure and Applied Geophysics, 64, 89–109.
    [Google Scholar]
  57. Stocklin, J. (1968) Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulletin, 52, 1229–1258.
    [Google Scholar]
  58. Stocklin, J. & Nabavi, M.H. (1973) Tectonic map of Iran 1:2,500,000. Tehran: Geological Survey of Iran.
  59. Sun, J. & Li, Y. (2013) Petrophysically constrained geophysical inversion using Parzen window density estimation. SEG Technical Program Expanded Abstracts, 2013, 3051–3056. https://doi.org/10.1190/segam2013‐1163.1
    [Google Scholar]
  60. Sun, J., Melo, A.T., Kim, J.D. & Wei, X. (2020) Unveiling the 3D undercover structure of a Precambrian intrusive complex by integrating airborne magnetic and gravity gradient data into 3D quasi‐geology model building. Interpretation, 8, SS15–SS29. https://doi.org/10.1190/INT‐2019‐0273.1
    [Google Scholar]
  61. Takougang, E.M.T., Harris, B., Kepic, A. & Le, C.V.A. (2015) Cooperative joint inversion of 3D seismic and magnetotelluric data: with application in a mineral province. Geophysics, 80, R175–R187. https://doi.org/10.1190/geo2014‐0252.1
    [Google Scholar]
  62. Tavakoli, M., Nejati Kalateh, A., Rezaie, M., Gross, L. & Fedi, M. (2021) Sequential joint inversion of gravity and magnetic data via the cross‐gradient constraint. Geophysical Prospecting, 69, 1542–1559. https://doi.org/10.1111/1365‐2478.13120
    [Google Scholar]
  63. Torab, F.M. & Lehmann, B. (2007) Magnetite‐apatite deposits of the Bafq District, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71, 347–363. https://doi.org/10.1180/minmag.2007.071.3.347
    [Google Scholar]
  64. Varfinezhad, R., Oskooi, B. & Fedi, M. (2020) Joint inversion of DC resistivity and magnetic data, constrained by cross gradients, compactness and depth weighting. Pure and Applied Geophysics, 177, 4325–4343. https://doi.org/10.1007/s00024‐020‐02457‐5
    [Google Scholar]
  65. Vatankhah, S., Liu, S., Renaut, R.A., Hu, X. & Gharloghi, M. (2020) Generalized Lp‐norm joint inversion of gravity and magnetic data using cross‐gradient constraint. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16. https://doi.org/10.48550/arXiv.2001.03579
    [Google Scholar]
  66. Vozoff, K. & Jupp, D.L.B. (1975) Joint inversion of geophysical data. Geophysical Journal of the Royal Astronomical Society, 42, 977–991. https://doi.org/10.1111/j.1365‐246X.1975.tb06462.x
    [Google Scholar]
  67. Wang, K. & Yang, D. (2022) Joint inversion with petrophysical constraints using indicator functions and the extended alternating direction method of multipliers. Geophysics, 88, R49–R64. https://doi.org/10.1190/geo2022‐0167.1
    [Google Scholar]
  68. Wei, X. & Sun, J. (2022) 3D probabilistic geology differentiation based on airborne geophysics, mixed Lp norm joint inversion, and physical property measurements. Geophysics, 87, K19–K33. https://doi.org/10.1190/geo2021‐0833.1
    [Google Scholar]
  69. Zarasvandi, A., Liaghat, S. & Zentilli, M. (2005) Porphyry copper deposits of the Urumieh‐Dokhtar magmatic arc, Iran. In: Porter, T.M. (Ed.) Super porphyry copper & gold deposits: a global perspective. Adelaide: PGC Publishing, pp. 441–452.
    [Google Scholar]
  70. Ziapour, S., Esmaeily, D., Khoshnoodi, K., Niroomand, S. & Simon, A.C. (2021) Mineralogy, geochemistry, and genesis of the Chahgaz (XIVA anomaly) Kiruna‐type iron oxide‐apatite (IOA) deposit, Bafq district, Central Iran. Ore Geology Reviews, 128, 103924. https://doi.org/10.1016/j.oregeorev.2020.103924
    [Google Scholar]
  71. Zhdanov, M.S. (2015) Inverse theory and applications in geophysics, 2nd edition, Amsterdam: Elsevier Science. https://doi.org/10.1016/C2012‐0‐03334‐0
    [Google Scholar]
  72. Zhdanov, M.S., Gribenko, A. & Wilson, G. (2012) Generalized joint inversion of multimodal geophysical data using Gramian constraints. Geophysical Research Letters, 39, L09301. https://doi.org/10.1029/2012GL051233
    [Google Scholar]
/content/journals/10.1002/nsg.12317
Loading
/content/journals/10.1002/nsg.12317
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error