1887
Volume 22, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

Abstract

Drone‐based geophysical surveying is an emerging measuring platform. High time‐cost efficiency and flexibility to survey over inaccessible areas make drones attractive or sometimes the only feasible option to carry geophysical measurements. This study presents a new drone‐towed electromagnetic induction and magnetic gradient sensor system used for near‐surface characterization and areal mapping.

The system uses various datasets to enhance processing and interpretation. The system includes; an electromagnetic induction instrument; magnetic sensors; GNSS‐IMU system; photogrammetry; Lidar model data; and geoid model data. Robust data processing and stochastic inversion subsurface characterization for archaeological prospecting with drone‐towed electromagnetic induction and magnetic gradient sensor systems. Robust statistical methods were used to process the data.

We conducted the fieldwork at one of the ancient Viking settlements in Denmark. The surveyed area was approximately 100200 m. We then implemented and applied a one‐dimensional laterally constrained non‐linear stochastic inversion to image the subsurface electrical conductivity. The inversion results show a consistent conductive layer at 5–8 m depths, likely associated with the groundwater level. This conductive layer is disrupted under a prominent anomaly within a 2–4 m wide area. Our analysis showed that this conductivity disruption could be a flint mine extending 7 m deep. This anomaly also has a strong signature in magnetic gradient data.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12320
2024-11-18
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/nsg/22/6/nsg12320.html?itemId=/content/journals/10.1002/nsg.12320&mimeType=html&fmt=ahah

References

  1. Auken, E. & Christiansen, A.V. (2004) Layered and laterally constrained 2D inversion of resistivity data. Geophysics, 69(3), 752–761.
    [Google Scholar]
  2. Auken, E., Christiansen, A.V., Jacobsen, B.H., Foged, N. & Sørensen, K.I. (2005) Piecewise 1D laterally constrained inversion of resistivity data. Geophysical Prospecting, 53(4), 497–506.
    [Google Scholar]
  3. Bai, P., Vignoli, G. & Hansen, T.M. (2021) 1D stochastic inversion of airborne time‐domain electromagnetic data with realistic prior and accounting for the forward modeling error. Remote Sensing, 13(19), 3881.
    [Google Scholar]
  4. Batayneh, A.T. (2011) Archaeogeophysics–archaeological prospection–a mini review. Journal of King Saud University‐Science, 23(1), 83–89.
    [Google Scholar]
  5. Becken, M., Nittinger, C.G., Smirnova, M., Steuer, A., Martin, T., Petersen, H., Meyer, U., Mörbe, W., Yogeshwar, P., Tezkan, B., et al. (2020) Desmex: a novel system development for semi‐airborne electromagnetic exploration. Geophysics, 85(6), E253–E267.
    [Google Scholar]
  6. Bjerg, T., da Silva, E.L.S. & Døssing, A. (2020) Investigation of UAV noise reduction for electromagnetic induction surveying. In NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining, volume 2020. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. 1–5.
  7. dataforsyningen (2022) Denmark's height model (DHM) contains detailed information about the height conditions in Denmark. https://dataforsyningen.dk/data/928#data (Accessed 10 May 2022).
  8. dataforsyningen (2023) Contains estimation of groundwater level in Denmark from ‘Styrelsen for dataforsyning og infrastruktur’. ftp://ftp.dataforsyningen.dk/HIP/historiske_modelberegninger/terraennaert_grundvand_10m/ (Accessed: 8 July 2023).
  9. Dobrovolskiy, A. (2021) Detection and localization of ferrous underground objects and buried utilities using airborne magnetometers and metal detectors. First Break, 39(8), 79–85.
    [Google Scholar]
  10. Dobrovolskiy, A. & Brass, K. (2020) GPR on a drone‐practical experience gained in the past 2 years. In 18th International Conference on Ground Penetrating Radar. Houston, TX: Society of Exploration Geophysicists, pp. 113–116.
  11. Eröss, R., Stoll, J.B., Bergers, R. & Tezkan, B. (2013) Three‐component VLF using an unmanned aerial system as sensor platform. First Break, 31(7), 33–40.
    [Google Scholar]
  12. Farquharson, C.G., Oldenburg, D.W. & Routh, P.S. (2003) Simultaneous 1D inversion of loop–loop electromagnetic data for magnetic susceptibility and electrical conductivity. Geophysics, 68(6), 1857–1869.
    [Google Scholar]
  13. geographiclib (2022) earth gravity model version EGM2008. https://geographiclib.sourceforge.io/C++/doc/geoid.html (Accessed 10 May 2022).
  14. Grayver, A.V. & Kuvshinov, A.V. (2016) Exploring equivalence domain in nonlinear inverse problems using covariance matrix adaption evolution strategy (CMAES) and random sampling. Geophysical Journal International, 205(2), 971–987.
    [Google Scholar]
  15. Hansen, N., Akimoto, Y. & Baudis, P. (2019) Cma‐es/pycma on GitHub. zenodo, http://doi.org/10.5281/zenodo. 2559634 (February 2019)
  16. Hansen, N. & Ostermeier, A. (2001) Completely derandomized self‐adaptation in evolution strategies. Evolutionary Computation, 9(2), 159–195.
    [Google Scholar]
  17. Hansen, P.C. (1999) The L‐curve and its use in the numerical treatment of inverse problems. IMM, Department of Mathematical Modelling, Technical Universityof Denmark.
  18. Hexagon . (2024) GNSS receiver firmware & GNSS software from Novatel Inc. https://novatel.com/products/firmware‐options‐pc‐software (Accessed 15 July 2024).
  19. IGS (2022) Products derived from GNSS data archived in the Cddis are generated and submitted by the IGS analysis and associate analysis centers. https://igs.org/products/#about (Accessed 10 May 2022).
  20. Jackisch, R., Heincke, B.H., Zimmermann, R., Sørensen, E.V., Pirttijärvi, M., Kirsch, M., Salmirinne, H., Lode, S., Kuronen, U. & Gloaguen, R. (2021) Drone‐based magnetic and multispectral surveys to develop a 3D model for mineral exploration at Qullissat, Disko Island, Greenland. Solid Earth Discussions, 2021, 1–51.
    [Google Scholar]
  21. Karaoulis, M., Ritsema, I., Bremmer, C., De Kleine, M., Oude Essink, G. & Ahlrichs, E. (2022) Drone‐borne electromagnetic (DR‐EM) surveying in the Netherlands: lab and field validation results. Remote Sensing, 14(21), 5335.
    [Google Scholar]
  22. Klose, T., Guillemoteau, J., Vignoli, G. & Tronicke, J. (2022) Laterally constrained inversion (LCI) of multi‐configuration EMI data with tunable sharpness. Journal of Applied Geophysics, 196, 104519.
    [Google Scholar]
  23. Klose, T., Guillemoteau, J., Vignoli, G., Walter, J., Herrmann, A. & Tronicke, J. (2023) Structurally constrained inversion by means of a minimum gradient support regularizer: examples of FD‐EMI data inversion constrained by GPR reflection data. Geophysical Journal International, 233(3), 1938–1949.
    [Google Scholar]
  24. Kolster, M.E., Wigh, M.D., Lima Simões da Silva, E., Bjerg Vilhelmsen, T. & Døssing, A. (2022) High‐speed magnetic surveying for unexploded ordnance using UAV systems. Remote Sensing, 14(5), 1134.
    [Google Scholar]
  25. Lerssi, J., Niemi, S. & Suppala, I. (2016) GEM‐2‐NEW generation electromagnetic sensor for near surface mapping. In Near Surface Geoscience 2016‐22nd European Meeting of Environmental and Engineering Geophysics, number 1. Houten, the Netherlands: European Association of Geoscientists & Engineers, pp. cp–495.
  26. Lev, E. & Arie, M. (2011) Unmanned airborne magnetic and VLF investigations: effective geophysical methodology for the near future. Positioning, 2011(2), 112–133.
    [Google Scholar]
  27. Linford, N. (2006) The application of geophysical methods to archaeological prospection. Reports on Progress in Physics, 69(7), 2205.
    [Google Scholar]
  28. Madsen, R.B. & Hansen, T.M. (2018) Estimation and accounting for the modeling error in probabilistic linearized amplitude variation with offset inversion. Geophysics, 83(2), N15–N30.
    [Google Scholar]
  29. Minsley, B.J., Smith, B.D., Hammack, R., Sams, J.I. & Veloski, G. (2012) Calibration and filtering strategies for frequency domain electromagnetic data. Journal of Applied Geophysics, 80, 56–66.
    [Google Scholar]
  30. Minty, B. (1991) Simple micro‐levelling for aeromagnetic data. Exploration Geophysics, 22(4), 591–592.
    [Google Scholar]
  31. Mitsuhata, Y. & Imasato, T. (2009) On‐site bias noise correction in multi‐frequency Slingram‐type electromagnetic induction measurements. Journal of Environmental & Engineering Geophysics, 14(4), 179–188.
    [Google Scholar]
  32. Mitsuhata, Y., Ueda, T., Kamimura, A., Kato, S., Takeuchi, A., Aduma, C. & Yokota, T. (2022) Development of a drone‐borne electromagnetic survey system for searching for buried vehicles and soil resistivity mapping. Near Surface Geophysics, 20(1), 16–29.
    [Google Scholar]
  33. Pattantyús‐Á, M. (1986) Geophysical results in archaeology in hungary. Geophysics, 51, 561–567.
    [Google Scholar]
  34. Qi, Z., Li, X., Li, H. & Liu, W. (2020) First results from drone‐based transient electromagnetic survey to map and detect unexploded ordnance. IEEE Geoscience and Remote Sensing Letters, 17(12), 2055–2059.
    [Google Scholar]
  35. Schmidt, V. & Coolen, J. (2021) Potential and challenges of UAV‐borne magnetic measurements for archaeological prospection. Revue d'archéométrie, 45(1), 207–209.
    [Google Scholar]
  36. SPH‐Engineering (2024) Drone flight planning and control software. https://www.sphengineering.com/flight‐planning/ugcs (Accessed 15 July 2024).
  37. Systems, G. (2022) The GEM GSMP‐35 magnetometer and the GSMP‐35G gradiometer. https://www.gemsys.ca/wp‐content/uploads/2015/11/GEM_Potassium_GSMP‐35_2015_fin.pdf (Accessed 10 May 2022).
  38. Tang, P., Chen, F., Jiang, A., Zhou, W., Wang, H., Leucci, G., de Giorgi, L., Sileo, M., Luo, R., Lasaponara, R., et al. (2018) Multi‐frequency electromagnetic induction survey for archaeological prospection: approach and results in Han Hangu Pass and Xishan Yang in China. Surveys in Geophysics, 39(6), 1285–1302.
    [Google Scholar]
  39. Tarantola, A. (2005) Inverse problem theory and methods for model parameter estimation. Philadelphia, PA: SIAM.
    [Google Scholar]
  40. Tezkan, B., Stoll, J.B., Bergers, R. & Großbach, H. (2011) Unmanned aircraft system proves itself as a geophysical measuring platform for aeromagnetic surveys. First Break, 29(4), 61–66.
    [Google Scholar]
  41. Viezzoli, A., Christiansen, A.V., Auken, E. & Sørensen, K. (2008) Quasi‐3D modeling of airborne tem data by spatially constrained inversion. Geophysics, 73(3), F105–F113.
    [Google Scholar]
  42. Vilhelmsen, T.B. (2023) UAV‐borne near‐surface geophysics: application of electromagnetic and magnetic sensor systems for surveying archaeological structures and anthropogenic metal contaminants. Technical University of Denmark.
  43. Vilhelmsen, T.B. & Døssing, A. (2022) Drone‐towed csem system for near‐surface geophysical prospecting: on instrument noise, temperature drift, transmission frequency and survey setup. EGUsphere, 1–32.
  44. Werthmüller, D. (2017) An open‐source full 3D electromagnetic modeler for 1D VTI media in Python: empymod. Geophysics, 82(6), WB9–WB19.
    [Google Scholar]
  45. White, J.C. & Beamish, D. (2015) Levelling aeromagnetic survey data without the need for tie‐lines. Geophysical Prospecting, 63(2), 451–460.
    [Google Scholar]
  46. Zhao, W., Forte, E., Pipan, M. & Tian, G. (2013) Ground penetrating radar (GPR) attribute analysis for archaeological prospection. Journal of Applied Geophysics, 97, 107–117.
    [Google Scholar]
/content/journals/10.1002/nsg.12320
Loading
/content/journals/10.1002/nsg.12320
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): airborne EM; archaeogeophysics; data processing; magnetic; modelling

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error