Full text loading...
-
High‐resolution surface‐wave‐constrained mapping of sparse dynamic cone penetrometer tests
- Source: Near Surface Geophysics, Volume 22, Issue 6, Nov 2024, p. 666 - 680
-
- 05 Feb 2024
- 27 Aug 2024
- 17 Sep 2024
- Previous Article
- Table of Contents
- Next Article
Abstract
The dynamic cone penetrometer (DCP) provides local soil resistance information. The difference in the vertical and horizontal data resolution (centimetric vs. multi‐metric) makes it difficult to spatialize the DCP data directly. This study uses a high‐resolution section, extracted by the seismic surface‐wave method, as the auxiliary and physical constraint for mapping the DCP index (DCPI). Geostatistical formalism (kriging and cokriging) is used. The associated measurement error of the seismic surface‐wave data is also included in the cokriging system, that is, the cokriging with variance of measurement error (CKVME). The proposed methods are validated for the first time on a test site designed and constructed for this study, with known geotechnical perspectives. Seismic and high‐intensity DCP campaigns were performed on the test site. The results show that with decimating the number of DCP soundings, the kriging approach is no longer capable of estimating the lateral variation in the test site, and the root‐mean‐square error (RMSE) value of the kriging section is increased by . With the help of sections constraining the lateral variability model, the RMSE values of the cokriging and the CKVME sections are increased by and .