1887
Volume 22, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

In this study, a combined workflow of computational methodologies is introduced to explore the transformative landscape of the ancient city of Savatra (Central Anatolia Region, Türkiye), which faces long‐term risks stemming from natural and anthropogenic threats. Emphasis was placed on regional and local scale landscape analysis, employing aerial and ground‐based remote‐sensing techniques to unravel past settlement patterns and understand the impact of environmental factors, topography and natural resources on both the location of Savatra and spatial organization of its features. On a regional scale, the influence of hydrological conditions, slope and aspect on the landscape was determined through the employment of Geographical Information System (GIS)‐based analysis of digital elevation models (DEMs). At a more local scale, the utilization of the Unmanned Aerial Systems‐derived DEM and geophysical survey helped identify potential archaeological features and also assessed the risk posed to these features. Furthermore, the incorporation of 3D GIS analysis, integrating 3D point cloud representations of the ground‐penetrating radar volume and DEM, provided essential insight into the state of preservation of the buried features. The collaborative application and joint interpretation of these methodologies yielded a wide range of clues and explanations, unravelling the complex palimpsest of past activities. This research not only serves as foundation for future studies specifically for Savatra, but also provides a preliminary remote sensing–based exploration blueprint to other yet to be studied archaeological sites.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12322
2024-11-18
2024-12-06
Loading full text...

Full text loading...

References

  1. Agisoft Metashape Professional 1.7.0 Software (2020). Available from: https://www.agisoft.com/
  2. Åhlfeldt, J. (2013) Digital Atlas of the Roman Empire (DARE). Patristica Nordica Annuaria, 28, 1821. Available from: https://dh.gu.se/dare/.
    [Google Scholar]
  3. Alkan, M. & Işık, İ. (2020) Doğu Lykaonia'dan Yeni Hristiyanlık Dönemi Yazıtları. Cedrus, 8, 531–545.
    [Google Scholar]
  4. Bahar, H. (2015) Eskiçağ’da Konya. In: Şehirlerin Sevdalısı İbrahim Hakkı Konyalı Armağanı, vol. 7. Konya: S.Ü. Türkiyat Araştırmaları Enstitüsü Yayınları, pp. 271–278.
    [Google Scholar]
  5. Belke, K. & Restle, M. (1984) Tabula Imperii Byzantini, vol. IV. Galatien und Lykaonien.
  6. Bouajaj, A., Bahi, L., Ouadif, L. & Awa, M. (2016) Slope stability analysis using GIS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 151–153. Available from: https://doi.org/10.5194/Isprs‐Archives‐XLII‐2‐W1‐151‐2016
    [Google Scholar]
  7. Campana, S. (2017) Drones in archaeology. State‐of‐the‐art and future perspectives. Archaeological Prospection, 24, 275–296.
    [Google Scholar]
  8. Ceola, S., Laio, F. & Montanari, A. (2015) Human‐impacted waters: new perspectives from global high‐resolution monitoring. Water Resources Research, 51(9), 7064–7079. Available from: https://doi.org/10.1002/2015WR017482.
    [Google Scholar]
  9. Ceraudo, G. (2013) Aerial photography in archaeology. In: Corsi, C., Slapšak, B. & Vermeulen, F. (Eds.) Good practice in archaeological diagnostics. Natural science in archaeology. Cham: Springer. Available from: https://doi.org/10.1007/978‐3‐319‐01784‐6_2.
    [Google Scholar]
  10. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L. et al. (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8, 1991–2007. Available from: https://doi.org/10.5194/gmd‐8‐1991‐2015.
    [Google Scholar]
  11. Conolly, J. & Lake, M. (2006) Geographical information systems in archaeology. Cambridge: Cambridge University Press.
    [Google Scholar]
  12. Conyers, L.B. (2009) Ground penetrating radar for landscape archaeology: methods and application. In: Campana, S. & Piro, S. (Eds.) Seeing the unseen geophysics and landscape archaeology. London, UK: CRC Press/Balkema.
    [Google Scholar]
  13. Cronin, H.S. (1902) First report of a journey in Pisidia, Lycaonia, and Pamphylia. II. The Journal of Hellenic Studies, 22, 339–376. Available from: https://doi.org/10.2307/623934.
    [Google Scholar]
  14. David, B. & Thomas, J. (2008) Handbook of landscape archaeology. New York: Routledge.
    [Google Scholar]
  15. Denham, T. (2017) Landscape archaeology. In: Gilbert, A.S. (Ed.) Encyclopedia of geoarchaeology. Dordrecht: Springer Science‐Business Media Dordrecht, pp. 464–468. Available from: https://doi.org/10.1007/978‐1‐4020‐4409‐0.
    [Google Scholar]
  16. Doğan, U. & Yılmaz, M. (2011) Natural and induced sinkholes of the Obruk Plateau and Karapınar‐Hotamış Plain, Turkey. Journal of Asian Earth Sciences, 40(2), 496–508. Available from: https://doi.org/10.1016/j.jseaes.2010.09.014.
    [Google Scholar]
  17. Dönmez, E.O., Ocakoğlu, F., Akbulut, A., Tunoğlu, C., Gümüş, B.A., Tuncer, A. et al. (2021) Vegetation record of the last three millennia in central Anatolia: archaeological and palaeoclimatic insights from Mogan Lake (Ankara, Turkey). Quaternary Science Reviews, 262, 106973. Available from: https://doi.org/10.1016/j.quascirev.2021.106973.
    [Google Scholar]
  18. England, A., Eastwood, W.J., Roberts, C.N., Turner, R. & Haldon, J.F. (2008) Historical landscape change in Cappadocia (central Turkey): a palaeoecological investigation of annually laminated sediments from Nar Lake. The Holocene, 18(8), 1229–1245. Available from: https://doi.org/10.1177/0959683608096598.
    [Google Scholar]
  19. Esri . (2021a) World lithology map. Available at: https://landscape6.arcgis.com/arcgis/rest/services/World_Lithology/ImageServer [Accessed 30th July 2021].
  20. Esri . (2021b) “Terrain” maps. Available at: https://elevation.arcgis.com/arcgis/rest/services/WorldElevation/Terrain/ImageServer [Accessed 30th July 2021].
  21. European Union . (2018) Copernicus land monitoring service. European Environment Agency (EEA).
  22. Fang, Y., Ceola, S., Paik, K., McGrath, G., Rao, P.S.C., Montanari, A. et al. (2018) Globally universal fractal pattern of human settlements in river networks. Earth's Future, 6, 1134–1145. Available from: https://doi.org/10.1029/2017EF000746.
    [Google Scholar]
  23. Field, J.S. (1998) Natural and constructed defenses in Fijian fortifications. Asian Perspectives, 37(1), 32–58.
    [Google Scholar]
  24. Fitzjohn, M. (2007) Viewing places: GIS applications for examining the perception of space in the mountains of Sicily. World Archaeology, 39(1), 36–50. Available from: https://doi.org/10.1080/00438240601136439
    [Google Scholar]
  25. Goodman, D. (2010) GPR‐slice ground penetrating radar imaging software V.7.0. Woodland Hills, CA: Geophysical Archaeometry Laboratory.
    [Google Scholar]
  26. Goodman, D. & Piro, S. (2013) GPR remote sensing in archaeology. Berlin, Heidelberg: Springer.
    [Google Scholar]
  27. Goodman (2014) GPR‐SLICE. Ground Penetrating Radar Imaging Software. User's Manual. California: Geophysical Archaeometry Laboratory.
  28. Haldon, J., Roberts, N., Izdebski, A., Fleitmann, D., McCormick, M., Cassis, M. et al. (2014) The climate and environment of Byzantine Anatolia: integrating science, history, and archaeology. The Journal of Interdisciplinary History, 45(2), 113–161. Available from: http://www.jstor.org/stable/43829598.
    [Google Scholar]
  29. Hartmann, J. & Moosdorf, N. (2012a) Global lithological map database v1.0 (gridded to 0.5° spatial resolution). Available at: https://doi.org/10.1594/PANGAEA.788537.
  30. Hartmann, J. & Moosdorf, N. (2012b) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochemistry, Geophysics Geosystems, 13, Q12004. Available from: https://doi.org/10.1029/2012GC004370.
    [Google Scholar]
  31. Herz, N. & Garrison, E.G. (1998) Geological methods for archaeology. New York: Oxford Academic.
    [Google Scholar]
  32. Işık, İ., Sarp, O. & Erdem, M.N. (2019) 2017 Yılı Konya İli, Karatay ve Altınekin İlçeleri, Bozdağ Milli Parkı Doğu ve Kuzey Kesimi Yüzey Araştırması. Advances in Science and Technology, 36(2), 275–292.
    [Google Scholar]
  33. Işık, İ. & Uyan, M. (2020) Yeni Bir Yol Keşfi: Konya‐Aksaray Antik Yol Güzergahı. History Studies, 12(4), 1883–1899. Available from: https://doi.org/10.9737/hist.2020.903.
    [Google Scholar]
  34. Işık, İ. (2018) Lykaonia Bolgesi Kuzeydogu Kesimi tarihi ve yerlesim yerleri. Selçuk Üniversitesi Edebiyat Fakültesi Dergisi, 1(40), 191–206. Available from: https://dx.doi.org/10.21497/sefad.515307.
    [Google Scholar]
  35. Jones, M.D., Roberts, C.N., Leng, M.J. & Türkes, M. (2006) A high‐resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate, Geology, 34(5), 361–364. Available from: https://doi.org/10.1130/G22407.1.
    [Google Scholar]
  36. Kadıoğlu, M. (2009) T.C. Kültür Bakanlığı, Türkiye Kültür Portalı Projesi, Arkeoloji ve Sanat Tarihi, Arkeoloji, Eski Anadolu Uygarlıkları, Roma Dönemi'nde Anadolu. Ankara.
  37. Karamut, İ., Çay, N. & Yılmaz, Y. (1985) Yağlıbayat Heykeltıraşlık Eserleri, Müze IV. Konya.
  38. Kummu, M., de Moel, H., Ward, P.J. & Varis, O. (2011) How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE, 6(6), e20578. Available from: https://doi.org/10.1371/journal.pone.0020578.
    [Google Scholar]
  39. Kuzucuoğlu, C. (2019) The physical geography of Turkey. In: Kuzucuoglu, C., Ciner, A. & Kazanci, N. (Ed.) Landscapes and landforms of Turkey. Cham: Springer Nature, pp. 7–15. Available from: https://doi.org/10.1007/978‐3‐030‐03515‐0
    [Google Scholar]
  40. Lang, M., Behrens, T., Schmidt, K., Svoboda, D., & Schmidt, C. (2016) A fully integrated UAV system for semi‐automated archaeological prospection. In: Campana, S., Scopigno, R., Carpentiero, G. & Cirillo, M. (Eds.) CAA 2015 keep the revolution going. Proceedings of the 43rd CAA, 30 March–2 April 2015, Siena, Italy. Oxford: Archaeopress Publishing. pp. 989–996. Available from: http://www.archaeopress.com/.
  41. Lasaponara, R. & Masini, N. (2007) Detection of archeological crop marks by using satellite QuickBird multi‐spectral imagery. Journal of Archaeological Science, 34(2), 214–221.
    [Google Scholar]
  42. Leckebusch, J. (2003) Ground penetrating radar: a modern three‐dimensional prospection method. Archaeological Prospection, 10, 213–240.
    [Google Scholar]
  43. Llobera, M. (2003) Extending GIS‐based visual analysis: the concept of visualscapes. International Journal of Geographical Information Science, 17(1), 25–48.
    [Google Scholar]
  44. Maden Teknik Arama (MTA) . (1992) 1/1.000.000 Turkey geomorphology map. Available from: https://www.mta.gov.tr/v3.0/hizmetler/jeoloji‐haritalari [Accessed 1st July 2021].
  45. Maden Teknik Arama (MTA) . (2021) 1/500.000 Turkey Geology Map. Available from: https://www.mta.gov.tr/v3.0/hizmetler/jeoloji‐haritalari [Accessed 1st July 2021].
  46. Malaperdas, G.D. & Panagiotidis, V.V. (2018) The aspects of aspect: understanding land exposure and its part in geographic information systems analysis. Energy & Environment, 29(6), 1022–1037. Available from: https://doi.org/10.1177/0958305x18766322
    [Google Scholar]
  47. Masini, N., Abate, N., Gizzi, F.T., Vitale, V., Minervino Amodio, A., Sileo, M. et al. (2022) UAV LiDAR based approach for the detection and interpretation of archaeological micro topography under canopy—the rediscovery of Perticara (Basilicata, Italy). Remote Sensing, 14, 6074. Available from: https://doi.org/10.3390/rs14236074
    [Google Scholar]
  48. McCormick, M., Harper, K., More, A.M. & Gibson, K. (2013) Geodatabase of historical evidence on roman and post‐roman climate. Harvard Database. Available from: https://doi.org/10.7910/DVN/TVXATE.
  49. McCune, B. & Keon, D. (2002) Equations for potential annual direct radiation and heat load. Journal of Vegetation Science, 13, 603–606.
    [Google Scholar]
  50. McCune, B. (2007) Improved estimates of ancient radiation and heat load using non‐parametric regression against topographic variables. Journal of Vegetation Science, 18, 751–754.
    [Google Scholar]
  51. Mumford, L. (1961) The city in history: its origins, its transformations, and its prospects. New York, NY: Harcourt, Brace & World.
    [Google Scholar]
  52. Oczipka, M., Bemmann, J., Piezonka, H., Munkabayar, J., Ahrens, B., Achtelik, M. et al. (2009) Small drones for geo‐archaeology in the steppes: locating and documenting the archaeological heritage of the Orkhon Valley in Mongolia. In: Michel, U. & Civco, D.L. (Eds.) Remote sensing for environmental monitoring, GIS applications, and geology IX, vol. 7478. International Society for Optics and Photonics, SPIE, pp. 53–63. Available from: https://doi.org/10.1117/12.830404.
    [Google Scholar]
  53. Ramsay, W.M. (1960) Anadolu'nun Tarihi Coğrafyası (çeviren Mihir Pektaş). Milli Eğitim Basımevi. Ankara. A.II/4923.
  54. Redlands, C.E. S.R. I. (2011) ArcGIS Desktop: release 10. Environmental Systems Research Institute, CA.
  55. Siart, C., Bakti, B.B. & Eitel, B. (2013) Digital geoarchaeology: an approach to reconstructing ancient landscapes at the human‐environmental interface. In: Siart, C., Forbriger, M. & Bubenzer, O. (Eds.) Digital geoarchaeology. Natural science in archaeology. Cham: Springer. Available from: https://doi.org/10.1007/978‐3‐319‐25316‐9_2.
    [Google Scholar]
  56. Smith, C. & Cochrane, E.E. (2011) How is visibility important for defence? A GIS analysis of sites in the Western Fijian Islands. Archaeology in Oceania, 46, 76–84.
    [Google Scholar]
  57. Statuto, D, Cillis, G. & Picuno, P. (2016) Analysis of the effects of agricultural land use change on rural environment and landscape through historical cartography and GIS tools. Journal of Agricultural Engineering, 47, 28–39.
    [Google Scholar]
  58. Statuto, D., Cillis, G. & Picuno, P. (2017) Using historical maps within a GIS to analyze two centuries of rural landscape changes in Southern Italy. Land, 6, 65.
    [Google Scholar]
  59. Strabon . (2000) Geographika, (Antik Anadolu Coğrafyası), XII‐XIII‐XIV (translated by Adnan Pekman). İstanbul.
  60. Texier, C. (2002) Küçük Asya; Coğrafyası, Tarihi ve Arkeolojisi 3. Cilt (translated by Ali Suat). Ankara: Enformasyon ve Dokümantasyon Hizmetleri Vakfı.
    [Google Scholar]
  61. Verdonck, L., Launaro, A., Vermeulen, F. & Millett, M. (2020) Ground‐penetrating radar survey at Falerii Novi: a new approach to the study of Roman cities. Antiquity, 94(375), 705–723. Available from: https://doi.org/10.15184/aqy.2020.82.
    [Google Scholar]
  62. Verhagen, P. (2018) Spatial analysis in archaeology: moving into new territories. In: Siart, C., Forbriger, M. & Bubenzer, O. (Eds.) Digital geoarchaeology. Natural science in archaeology. Cham: Springer. Available from: https://doi.org/10.1007/978‐3‐319‐25316‐9_2.
    [Google Scholar]
  63. Vermeulen, F. & Corsi, C. (2015) Some methodological considerations and suggestions for good practice in diagnostics and visualizations of complex archaeological sites: the experience of the radio‐past project'. Amsterdam: Amsterdam University Press, pp. 156–165.
    [Google Scholar]
  64. von Aulock, H. (1976) Münzen und Stadte Lykaoniens. (Vol. 16). Wasmuth.
  65. Wheatley, D. (1995) Cumulative viewshed analysis: a GIS‐based method for investigating intervisibility, and its archaeological application. G.Lock & Z.Stancic (eds.) Archaeology and geographical information systems: a European perspective. London: Routlege, pp. 171–185.
    [Google Scholar]
  66. Wheatley, D. & Gillings, M. (2002) Spatial technology and archaeology: the archaeological applications of GIS. London New York: Taylor & Francis.
    [Google Scholar]
  67. Yükçü, S. & Atağan, G. (2011) Ortadoğu'da Zaman Tünelinde Ticaret. Muhasebe ve Finans Tarihi Araştırmaları Dergisi, (1), 86–109.
    [Google Scholar]
/content/journals/10.1002/nsg.12322
Loading
/content/journals/10.1002/nsg.12322
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 3D GIS; digital elevation model; ground penetrating radar; land use; UAS photogrammetry

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error