1887
Volume 23, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

The Gwalior basin in Central India is of significant geological interest due to its diverse geological formations, tectonic history and landscape features. Its location at the boundary between the stable Indian Shield and tectonically active regions to the north and east creates unique seismotectonic and stress patterns, making it different from other areas in central India. In this study, we conducted microtremor measurements at 46 uniformly distributed sites in and around the basin to evaluate the site characteristics, including shallow shear wave velocity structure (Vs). We used Tromino 3G seismometer, with a flat frequency response from 0.1 Hz to 1024 Hz, for the microtremor measurements. Most of the study area is classified as site class D, with predominant frequencies between 1.6 Hz and 2.7 Hz and peak amplitudes ranging from 3.0 to 9.0. Our results show that predominant frequencies range from 1.5 Hz to 2.7 Hz for the Quaternary formation, 2.4 Hz to 3.5 Hz for the sandstones of the Kaimur Group and 1.6 Hz to 3.6 Hz for the Gwalior Group rocks. Higher amplitude of the HVSR is observed in the northeastern and eastern parts of the basin. We also estimated a liquefaction potential index (Kg) exceeding 10 for most of the study area, indicating vulnerability under dynamic loading. The thicker alluvium deposits in the northeastern and eastern parts associated with the Swarnarekha River are confirmed by lithological data, showing lower shear wave velocities. Our results provide key parameters for understanding the seismic hazards, which can be useful for assessing seismic risks and generating a disaster risk mitigation plan for the area.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12328
2025-01-21
2025-02-19
Loading full text...

Full text loading...

References

  1. Absar, N., Raza, M., Roy, M., Naqvi, S.M. & Roy, A.K. (2009) Composition and weathering conditions of Paleoproterozoic upper crust of bundelkhand craton, central India: records from geochemistry of clastic sediments of 1.9 Ga gwalior group. Precambrian Research, 168(3–4), 313–329.
    [Google Scholar]
  2. Acharyya, S.K., Kayal, J.R., Roy, A. & Chaturvedi, R.K. (1998). Jabalpur earthquake of May 22, 1997: Constraint from aftershock study. J. Geol. Soc. India, 51, 295–304.
    [Google Scholar]
  3. Banerjee, A., Singh, P. & Pratap, K. (2017) Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: an integrated GIS‐based approach. Applied Water Science, 7, 1807–1815.
    [Google Scholar]
  4. Bard, P.‐Y. (1999) Microtremor measurements: a tool for site effect estimation. The Effects of Surface Geology on Seismic Motion, 3, 1251–1279.
    [Google Scholar]
  5. Bard, P.‐Y. (2000) Lecture notes on ‘seismology, seismic hazard assessment and risk mitigation’. Potsdam: International Training Course.
    [Google Scholar]
  6. Beroya, M.A.A., Aydin, A. & Katzenbach, R. (2009) Insight into the effects of clay mineralogy on the cyclic behavior of silt–clay mixtures. Engineering Geology, 106(3–4), 154–162.
    [Google Scholar]
  7. Bhattacharya, S.N., Ghosh, A.K., Suresh, G., Baidya, P.R. & Saxena, R.C. (1997). Source parameters of Jabalpur earthquake of May 22, 1997. Current Science, 73, 855–863.
    [Google Scholar]
  8. Bonilla, L.F., Steidl, J.H., Lindley, G.T., Tumarkin, A.G. & Archuleta, R.J. (1997) Site amplification in the San Fernando Valley, California: variability of site‐effect estimation using the S‐wave, coda, and H/V methods. Bulletin of the Seismological Society of America, 87(3), 710–730.
    [Google Scholar]
  9. BIS (1893) (Part 1). 2002. Indian standard criteria for earthquake resistant design of structures, Part 1 ‐ general provisions and buildings. 5th ed. New Delhi: Bureau of Indian Standards; p. 42.
  10. Calamita, G., Serlenga, V., Stabile, T.A., Gallipoli, M.R., Bellanova, J., Bonano, M. et al. (2018) An integrated geophysical approach for urban underground characterization: the Avigliano town (southern Italy) case study. Geomatics, Natural Hazards and Risk, 10(1), 412–432. Available from: https://doi.org/10.1080/19475705.2018.1526220
    [Google Scholar]
  11. Chakraborty, P.P. & Paul, P. (2014) Depositional character of a dry‐climate alluvial fan system from Palaeoproterozoic rift setting using facies architecture and palaeohydraulics: example from the Par Formation, Gwalior Group, central. India Journal of Asian Earth Sciences, 91, 298–315.
    [Google Scholar]
  12. Chávez‐García, F.J. (2007). Site effects: from observation and modeling to accounting for them in building codes. In: Pitilakis K.D. (eds) Earthquake geotechnical engineering. Geotechnical, Geological and Earthquake Engineering, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978‐1‐4020‐5893‐6_3
    [Google Scholar]
  13. Cornell, C.A. (1968) Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.
    [Google Scholar]
  14. Daag, A., Aque, L.E., Locaba, O., Grutas, R. & Solidum, R. (2023) Site response measurements and implications to soil liquefaction potential using microtremor H/V in Greater Metro Manila, Philippines. Geomatics, Natural Hazards and Risk, 14(1), 2256936. Available from: https://doi.org/10.1080/19475705.2023.2256936
    [Google Scholar]
  15. Duval, A.M., Vidal, S., Méneroud, J.‐P., Singer, A., De Santis, F., Ramos, C. et al. (2001) Caracas, Venezuela, site effect determination with microtremors. Pure and Applied Geophysics, 158, 2513–2523.
    [Google Scholar]
  16. Fäh, D., Kind, F., & Giardini, D. (2003). Inversion of local S‐wave velocity structures from average H/V ratios and their use for the estimation of site effects. Journal of Seismology, 7, 449–467.
    [Google Scholar]
  17. Geli, L., Bard, P.‐Y. & Jullien, B. (1988) The effect of topography on earthquake ground motion: a review and new results. Bulletin of the Seismological Society of America (1988), 78(1), 42–63.
    [Google Scholar]
  18. Gosselin, J.M., Dosso, S.E., Askan, A., Wathelet, M., Savvaidis, A., Cassidy, J.F. (2022) A review of inverse methods in seismic site characterization. Journal of Seismology, 26, 781–821.
    [Google Scholar]
  19. GSI (2000a) Jabalpur earthquake 22 May 1997: a geoscientific study. Kolkata, WB: Geological Survey of India.
    [Google Scholar]
  20. GSI . (2000b). Seismotectonic Atlas of India and its Environs. (New Delhi: Geological Survey of India). https://bhukosh.gsi.gov.in/Bhukosh/Public
    [Google Scholar]
  21. Gupta, S., Vishal Parvez, I.A. & Khan, P.K. (2022) Imaging subsurface geological complexity (2D/3D) beneath the Greater Srinagar region of the Kashmir basin, Northwest Himalaya. Near Surface Geophysics, 20(1), 94–114.
    [Google Scholar]
  22. Gupta, H.K., Chadha, R.K., Rao, M.N., Narayana, B.L., Mandal, P., Ravi Kumar, M. & Kumar, N. (1997). The Jabalpur earthquake of May 22, 1997. Journal of the Geological Society of India, 50, 85–91.
    [Google Scholar]
  23. Hellel, M., Chatelain, J.L., Guillier, B., Machane, D., Salem, R.B., Oubaiche, E.H. & Haddoum, H. (2010) Heavier damages without site effects and site effects with lighter damages: Boumerdes city (Algeria) after the May 2003 earthquake. Seismological Research Letters, 81(1), 37–43.
    [Google Scholar]
  24. Ibs‐ von Seht, M. & Wohlenberg, J. (1999) Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89(1), 250–259.
    [Google Scholar]
  25. Iyengar, R.N., Sharma, D. & Siddiqui, J.M. (1999) Earthquake history of India in medieval times. Indian Journal of History of Science, 34, 181–238.
    [Google Scholar]
  26. Konno, K. & Ohmachi, T. (1998) Ground‐motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241.
    [Google Scholar]
  27. Kramer, S.L. (1996) Geotechnical earthquake engineering. Upper Saddle River, NJ: Prentice Hall.
    [Google Scholar]
  28. Kühn, D., Ohrnberger, M. & Dahm, T. (2011) Imaging a shallow salt diapir using ambient seismic vibrations beneath the densely built‐up city area of Hamburg, Northern Germany. Journal of Seismology, 15, 507–531.
    [Google Scholar]
  29. Kumari, S., Singh, A.P., Shankar, U., Pratap, B. & Gupta, A.K. (2022) Study of local site conditions for seismic hazard assessment at the BHU campus, Varanasi, North India, using ambient noise measurements. Journal of the Geological Society of India, 98(11), 1531–1540.
    [Google Scholar]
  30. Lachetl, C. & Bard, P.Y. (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique. Journal of Physics of the Earth, 42(5), 377–397.
    [Google Scholar]
  31. Lermo, J. & Chávez‐García, F.J. (1994) Are microtremors useful in site response evaluation?. Bulletin of the Seismological Society of America, 84(5), 1350–1364.
    [Google Scholar]
  32. Liu, Z.X., Berne, S., Saito, Y., Lericolais, G. & Marsset, T. (2000) Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. Journal of Asian Earth Sciences, 18(4), 441–452.
    [Google Scholar]
  33. Maresca, R., Nardone, L., Pasquale, G., Pinto, F. & Bianco, F. (2012) Effects of surface geology on seismic ground motion deduced from ambient‐noise measurements in the town of Avellino, Irpinia Region (Italy). Pure and Applied Geophysics, 169, 1173–1188.
    [Google Scholar]
  34. Meneisy, A.M., Toni, M. & Omran, A.A. (2020) Soft sediment characterization using seismic techniques at Beni Suef city, Egypt. Journal of Environmental and Engineering Geophysics, 25(3), 391–401.
    [Google Scholar]
  35. Mohanty, S.P. (2023) Proterozoic basins of the Bundelkhand Craton, India: correlations and significance in understanding the tectonic evolution. Geosystems and Geoenvironment, 2, 100155. Available from: https://doi.org/10.1016/j.geogeo.2022.100155
    [Google Scholar]
  36. Molnar, S., Cassidy, J.F., Castellaro, S. et al. (2018) Application of microtremor horizontal‐to‐vertical spectral ratio (MHVSR) analysis for site characterization: state of the art. Surveys in Geophysics, 39(4), 613–631.
    [Google Scholar]
  37. Moya, A., Schmidt, V., Segura, C., Boschini, I. & Atakan, K. (2000) Empirical evaluation of site effects in the metropolitan area of San José, Costa Rica. Soil Dynamics and Earthquake Engineering, 20(1–4), 177–185.
    [Google Scholar]
  38. Mucciarelli, M. & Gallipoli, M.R. (2001) A critical review of 10 years of microtremor HVSR technique. Bollettino di Geofisica Teorica ed Applicata, 42(3–4), 255–266.
    [Google Scholar]
  39. Mukherjee, S.N. (1942) Seismological features of the Satpura earthquake of the 14th March, 1938. Proceedings of the National Academy of Sciences, 16, 167–175.
    [Google Scholar]
  40. Mukhopadhyay, S. & Bormann, P. (2004) Low cost seismic microzonation using microtremor data: an example from Delhi, India. Journal of Asian Earth Science, 24, pp. 271–280.
    [Google Scholar]
  41. Naidu, G.D., Khupat, S. & Awasthi, D.K. (2015) Deciphering the seismicity pattern from MEQ study at Indira Sagar reservoir area, Madhya Pradesh, India. Journal of Indian Geophysical Union, 19(1), 55–61.
    [Google Scholar]
  42. Nakamura, Y. (2019) What is Nakamura method?. Seismological Research Letters, 90(4), 1437–1443.
    [Google Scholar]
  43. Nakamura, Y. (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1), 25–33.
    [Google Scholar]
  44. Nakamura, Y. (1996) Real‐time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. Quarterly Report‐RTRI, 37(3), 112–127.
    [Google Scholar]
  45. Nogoshi, M. & Igarashi, T. (1970) On the propagation characteristics of microtremors. Journal of the Seismological Society Japan, 23, 264–280.
    [Google Scholar]
  46. Noguchi, T. & Nishida, R. (2002) Determination of subsurface structure of Tottori plain using microtremors and gravity anomaly. Journal of Natural Disaster Science, 24(1), 1–13.
    [Google Scholar]
  47. Olsen, K.B. (2000) Site amplification in the Los Angeles basin from three‐dimensional modelling of ground motion. Bulletin of the Seismological Society of America, 90(6B), S77–S94.
    [Google Scholar]
  48. Pande, P., Gupta, S.K., Sharda, Y.P., Joshi, K.C., Babu, P.A.R. & Upadhyay, M.C. (1995) A geoseismological study of bhind earthquake of September 1, 1994. NRO‐ 18584‐1994‐1995‐Bhind Earthquake, 1–30.
  49. Pandey, A.P., Singh, A.P., Bansal, B.K. & Suresh, G., Prajapati, S.K. (2020) Appraisal of seismic noise scenario at national seismological network of India in COVID‐19 lockdown situation. Geomatics, Natural Hazards and Risk, 11(1), 2095–2122.
    [Google Scholar]
  50. Parolai, S., Bormann, P. & Milkereit, C. (2002) New relationships between vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bulletin of the Seismological Society of America, 92(6), 2521–2527.
    [Google Scholar]
  51. Picozzi, M., Parolai, S. & Albarello, D. (2005) Statistical analysis of noise horizontal‐to‐vertical spectral ratios (HVSR). Bulletin of the Seismological Society of America, 95, 1779–1786.
    [Google Scholar]
  52. Pilz, M., Parolai, S., Stupazzini, M., Paolucci, R. & Zschau, J. (2011) Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code. Geophysical Journal International, 187(2), 929–945.
    [Google Scholar]
  53. Pimprikar, S.D. & Devarajan, M.K. (2003) Earthquake swarm activity around village Bamhori, Seoni District, Madhya Pradesh: a preliminary study. Journal of the Geological Society of India, 62, 498–502.
    [Google Scholar]
  54. Rajendran, C.P., Rajendran, K., Sanwal, J. & Sandiford, M. (2013) Archeological and historical database on the medieval earthquakes of the central Himalaya: ambiguities and inferences. Seismological Research Letters, 87, 1098–1108. Available from: https://doi.org/10.1785/0220130077.
    [Google Scholar]
  55. Ramakrishnan, D., Singh, T.N., Purwar, N., Barde, K.S., Gulati, A. & Gupta, S. (2008) Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India. Computational Geosciences, 12, 491–501.
    [Google Scholar]
  56. Rastogi, B.K., Singh, A.P., Sairam, B., Jain, S.K., Kaneko, F. & Segawa, S. (2011) The possibility of site effects: the Anjar case, following the past earthquakes in the Gujarat, India. Seismological Research Letters, 82(1), 692–701. Available from: https://doi.org/10.1785/gssrl.82.1.692.
    [Google Scholar]
  57. Roy, A.K., Absar, N., Kumar, S., Sharma, R., Rai, S.D. & Parihar, P.S. (2005) Some observations lithostratigraphy and uranium potential of Gwalior group of rocks, Gwalior district, MP. In: Proceedings ‘International Conference on Precambrian Crustalgrowth and Tectonism’. Jhansi, Bundelkhand University. pp. 299–301.
  58. Sakhakarmi, D., Kawan, C.K., Prajapati, A., Pradhananga, C., Karanjit, S. & Bijukchhen, S.M. (2024) Seismic microzonation and soil‐structure resonance analysis in Suryabinayak Municipality, Bhaktapur, Nepal: insights from ambient vibration measurements. Geomatics, Natural Hazards and Risk, 15(1), 1–22. Available from: https://doi.org/10.1080/19475705.2024.2311892
    [Google Scholar]
  59. Sambridge, M. (1999) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophysical Journal International, 138(2), 479–494.
    [Google Scholar]
  60. Samom, J.D., Ahmad, T. & Choudhary, A.K. (2018) Geochemical and Sm–Nd isotopic constraints on the petrogenesis and tectonic setting of the Proterozoic mafic magmatism of the Gwalior Basin, Central India: the influence of Large Igneous Provinces on Proterozoic crustal evolution. Geological Society London Special Publications, 463, 243–268
    [Google Scholar]
  61. Sanjeev, R. (2017) Geophysical resistivity survey (VES) for selection of appropriate artificial recharge (Ar) structures for augmentation of groundwater resources in Gwalior, MP, India. Environmental and Earth Sciences Research Journal, 4(1), 7–11.
    [Google Scholar]
  62. SESAME (2004). Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing, and Interpretation. (pp. 1–62). SESAME European Research Project WP12.
  63. Shankar, U., Kumari, S., Yadav, P.K., Singh, A.P. & Gupta, A.K. (2021) Microtremor measurements in the India's holy city, Varanasi for assessment of site characteristics. Quaternary International, 585, 143–151.
    [Google Scholar]
  64. Singh, A.P., Annam, N. & Kumar, S. (2014) Assessment of predominant frequencies using ambient vibration in the Kachchh region of western India: Implications for earthquake hazards. Natural Hazards, 73(3), 1291–1309.
    [Google Scholar]
  65. Singh, P.K. & Singh, U.C. (2009) Water resource evaluation and management for Morar River basin, Gwalior istrict, Madhya Pradesh, using GIS. Earth Science India, 3, 174–186.
    [Google Scholar]
  66. Singh, A.P. (2015) Seismic hazard evaluation in Anjar city area of western India: microtremor array measurement. Soil Dynamics and Earthquake Engineering, 71, 143–150.
    [Google Scholar]
  67. Singh, A.P., Parmar, A. & Chopra, S. (2017a) Microtremor study for evaluating the site response characteristics in the Surat city of western India. Natural Hazards, 89, 1145–1166.
    [Google Scholar]
  68. Singh, A.P., Shukla, A., Kumar, M.R. & Thakkar, M.G. (2017b) Characterizing surface geology, liquefaction potential, and maximum intensity in the Kachchh seismic zone, Western India, through microtremor analysis. Bulletin of the Seismological Society of America, 107(3), 1277–1292.
    [Google Scholar]
  69. Singh, P.K., Kumar, S. & Singh, U.C. (2011) Groundwater resource evaluation in the Gwalior area, India, using satellite data: an integrated geomorphological and geophysical approach. Hydrogeology Journal, 19(7), 1421–1429.
    [Google Scholar]
  70. Sinha‐Roy, S., Malhotra, G., & Guha, D.B.A. (1995). A transect across Rajasthan Precambrian terrain in relation to geology, tectonics, and crustal evolution of south‐central Rajasthan. In Continental Crust of NW and Central India, (Geol. Soc. India Mem). Vol. 31, (eds Sinha-Roy, S. & Gupta, K. R.) 63–90.
  71. Stanko, D., Markušic, S., Strelec, S. & Gazdek, M. (2017) HVSR analysis of seismic site effects and soil‐structure resonance in Varaždin city (North Croatia). Soil Dynamics and Earthquake Engineering, 92, 666–677.
    [Google Scholar]
  72. Thakkar, M.G. & Goyal, B. (2004) On the relation between magnitude and liquefaction dimension at the epicentral zone of 2001 Bhuj earthquake. Current Science, 87(6), 811–817.
    [Google Scholar]
  73. Toni, M., Abd el‐aal, A.K. & Mohamed, G.A. (2016) Ambient noise for determination of site dynamic properties at Hurghada and Safaga cities, Red Sea, Egypt. Acta Geodynamica et Geomaterialia, 13(3), 227–240. Available from: https://doi.org/10.13168/AGG.2016.0004.
    [Google Scholar]
  74. Toni, M., El Rayess, M. & Hafiez, H.A. (2022) Local site characteristics and earthquake ground motion parameters around the Nile River, south of Cairo, Egypt. Journal of Applied Geophysics, 197, 104528.
    [Google Scholar]
  75. Toni, M., Yokoi, T. & El Rayess, M. (2019) Site characterization using passive seismic techniques: a case of Suez city, Egypt. Journal of African Earth Sciences, 156(2019), 1–11. Available from: https://doi.org/10.1016/j.jafrearsci.2019.05.004.
    [Google Scholar]
  76. Turnbull, M.L. (2008) Relative seismic shaking vulnerability microzonation using an adaptation of the Nakamura horizontal to vertical spectral ratio method. Journal of Earth System Science, 117(S2), 879–895.
    [Google Scholar]
  77. Verma, V. (2003) Mrignayani. Delhi: Prabhath Prakasan. (an historical novel in Hindi; reprinted).
    [Google Scholar]
  78. Wathelet, M., Jongmans, D. & Ohrnberger, M. (2004) Surface‐wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surface Geophysics, 2(4), 211–221.
    [Google Scholar]
  79. Yamanaka, H., Takemura, M., Ishida, H. & Niwa, M. (1994) Characteristics of long‐period microtremors and their applicability in exploration of deep sedimentary layers. Bulletin of the Seismological Society of America, 84(6), 1831–1841.
    [Google Scholar]
/content/journals/10.1002/nsg.12328
Loading
/content/journals/10.1002/nsg.12328
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error