1887
Volume 23, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

Abstract

Advancements in technologies and acquisition techniques in reflection seismology have increased the quantity of data that can be recorded in a single survey. The spreading of three‐component (3C) recorders has resulted in multicomponent data acquisitions to be more cost‐effective than single‐component (1C) acquisitions, making 3C datasets more common. Therefore, the need for processing workflows aiming to enhance S‐wave from P‐wave‐designed acquisitions is increasing. As part of a larger survey for geological carbon storage site investigations, a 1‐km‐long seismic profile was acquired near the city of Randers in Denmark and is considered in this study. The acquisition setup consisted of two vertical vibrating sources, operating every 10 m, recorded simultaneously from a 1C nodal array, 10 m spaced and a landstreamer system, equipped with 60 3C micro‐electro‐mechanical sensors in 2 m intervals. Analysis of the 3C data recorded from the landstreamer system shows PP‐, PS‐ and SS‐wavefield reflections from a shallow horizon nearly 50 m below the ground surface. Although the PP‐wavefield data processing was straightforward, the SS‐wavefield imaging was challenged by strong surface waves recorded in the data, thus requiring a tailored workflow for its processing. The workflow employs a reflection‐picked moveout correction specifically designed on the observed reflections with respect to the data acquisition geometry. Results demonstrate that this tailored method is effective, yielding improved continuity of the SS‐wavefield reflectivity with respect to the traditional normal moveout corrections. P‐ and S‐wave interval velocity models are estimated in depth, and their ratio is computed to complement the geological interpretations of the shallow subsurface. Similar imaging scenarios can benefit from the proposed method to sharpen SS‐wavefield reflections in stacked section.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.70010
2025-05-21
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/nsg/23/3/nsg70010.html?itemId=/content/journals/10.1002/nsg.70010&mimeType=html&fmt=ahah

References

  1. Bharadwaj, P., Drijkoningen, G., Mulder, W., Thorbecke, J., Neducza, B. & Jenneskens, R. (2017) A shear‐wave seismic system using full‐waveform inversion to look ahead of a tunnel‐boring machine. Near Surface Geophysics, 15(3), 210–225. Available from: https://doi.org/10.3997/1873‐0604.2017014
    [Google Scholar]
  2. Brittle, K.F., Lines, L.R. & Dey, A.K. (2001), Vibroseis deconvolution: a comparison of cross‐correlation and frequency‐domain sweep deconvolution. Geophysical Prospecting, 49, 675–686. Available from: https://doi.org/10.1046/j.1365‐2478.2001.00291.x
    [Google Scholar]
  3. Brodic, B., Malehmir, A., Pugin, A. & Maries, G. (2018) Three‐component seismic land streamer study of an esker architecture through S‐ and surface‐wave imaging. Geophysics, 83(6), B339–B353. Available from: https://doi.org/10.1190/geo2017‐0747.1
    [Google Scholar]
  4. Burschil, T., Beilecke, T. & Krawczyk, C.M. (2015) Finite‐difference modelling to evaluate seismic P‐wave and shear‐wave field data. Solid Earth, 6(1), 33–47. Available from: https://doi.org/10.5194/se‐6‐33‐2015
    [Google Scholar]
  5. Burschil, T. & Buness, H. (2020) S‐wave seismic imaging of near‐surface sediments using tailored processing strategies. Journal of Applied Geophysics, 173, 103927. Available from: https://doi.org/10.1016/j.jappgeo.2019.103927
    [Google Scholar]
  6. Carr, B.J., Hajnal, Z. & Prugger, A. (1998) Shear‐wave studies in glacial till. Geophysics, 63(4), 1273–1284. Available from: https://doi.org/10.1190/1.1444429
    [Google Scholar]
  7. Energi Randers Vand A/S . (2007) Grundvandsmodel for Randers—Opstilling og kalibrering af grundvandsmodel for Randers. GEUSGrundvandsrapport 91576. Technical report (Danish). Available from: https://data.geus.dk/grundvandsrapport/detail?id=91576
  8. GeoAtlas . (2024) https://data.geo.dk/geoatlas‐live
  9. Hardage, B.A. & Wagner, D. (2014a) Generating direct‐S modes with simple, low‐cost, widely available seismic sources. Interpretation, 2(2), SE1–SE15. Available from: https://doi.org/10.1190/INT‐2013‐0095.1
    [Google Scholar]
  10. Hardage, B.A. & Wagner, D. (2014b) S‐S imaging with vertical‐force sources. Interpretation, 2(2), SE29–SE38. Available from: https://doi.org/10.1190/INT‐2013‐0097.1
    [Google Scholar]
  11. Hardage, R. (2015) Simplifying and lowering the cost of S‐wave reflection seismology through use of P‐wave sources. SEG‐GSH Webinar.
  12. Hardage, B. (2017) Practicing S‐wave reflection seismology with “P‐wave” sources: concepts, principles, and overview. In: SEG Technical Program Expanded Abstracts 2017, Houston, TX, SEG. pp. 5152–5156. Available from: https://doi.org/10.1190/segam2017‐17256173.1
  13. Inazaki, T. (2004) High‐resolution seismic reflection surveying at paved areas using an S‐wave type Land Streamer. Exploration Geophysics, 35(1), 1–6. Available from: https://doi.org/10.1071/EG04001
    [Google Scholar]
  14. Kearey, P., Brooks, M., Hill, I. (2002) An introduction to geophysical exploration, 3rd edition, Hoboken, NJ: Blackwell Science.
    [Google Scholar]
  15. Krawczyk, C.M., Polom, U. & Beilecke, T. (2013) Shear‐wave reflection seismics as a valuable tool for near‐surface urban applications. The Leading Edge, 32(3), 256–263. Available from: https://doi.org/10.1190/tle32030256.1
    [Google Scholar]
  16. Krawczyk, C.M., Polom, U., Malehmir, A. & Bastani, M. (2013) Quick‐clay landslides in Sweden‐insights from shear‐wave reflection seismics and geotechnical integration. In: Near Surface Geoscience 2013—19th EAGE European Meeting of Environmental and Engineering Geophysics, Utrecht, European Association of Geoscientists & Engineers. Available from: https://doi.org/10.3997/2214‐4609.20131348
  17. Lieberkind, K., Bang, I., Mikkelsen, N. & Nygaard, E. (1982) Late cretaceous and Danian limestone. Danmarks Geologiske Undersøgelse Serie B, 8(25), 49–62. Available from: https://doi.org/10.34194/serieb.v8.7069
    [Google Scholar]
  18. Macrides, C.G. & Kelamis, P.G. (2000) A 9C‐2D land seismic experiment for lithology estimation of a permian clastic reservoir. GeoArabia, 5(3), 427–440. Available from: https://doi.org/10.2113/geoarabia0503427
    [Google Scholar]
  19. Malehmir, A., Hong, T.K., Lee, J., Zappalá, S., Brodic, B., Chung, D. et al. (2022) Fault intersections control short period intraplate start‐stop seismicity in the Korean Peninsula. Tectonophysics, 834, 229387. Available from: https://doi.org/10.1016/j.tecto.2022.229387
    [Google Scholar]
  20. Malehmir, A., Socco, L.V., Bastani, M., Krawczyk, C.M., Pfaffhuber, A.A., Miller, R.D. et al. (2016) Near‐surface geophysical characterization of areas prone to natural hazards: a review of the current and perspective on the future. Advances in Geophysics, 57, 51–146. Available from: https://doi.org/10.1016/bs.agph.2016.08.001
    [Google Scholar]
  21. Miljø‐ og Fødevareministeriet . (2020) Grundvandskortlægning for Randers Kommune ‐Kortlægning i Randers kommune. Miljø‐ og Fødevareministeriet‐ GEUSGrundvandsrapport94521. Technical report (Danish). Available from: https://data.geus.dk/grundvandsrapport/detail?id=94521
    [Google Scholar]
  22. Miller, G. & Pursey, H. (1954) The field and radiation impedance of mechanical radiators on the free surface of a semi‐infinite isotropic solid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 223(1155), 521–541. Available from: https://doi.org/10.1098/rspa.1954.0134
    [Google Scholar]
  23. Naturstyrelsen . (2014) Grundvandsmodel for Randers nord kortlægninsområde. GEUS Grundvandsmodel 90893. Technical report (Danish). Available from: https://data.geus.dk/grundvandsrapport/detail?id=90893
    [Google Scholar]
  24. Papadopoulou, M., Colombero, C., Staring, M., Singer, J., Eddies, R., Fliedner, M. et al. (2021) Fast near‐surface investigation with surface‐wave attributes. In NSG2021 2nd Conference on Geophysics for Infrastructure Planning, Monitoring and BIM. Utrecht, European Association of Geoscientists & Engineers. pp. 1–5. Available from: https://doi.org/10.3997/2214‐4609.202120128
  25. Papadopoulou, M., Zappalá, S., Malehmir, A., Gregersen, U., Hjelm, L., Nielsen, L. et al. (2023) Innovating land seismic investigations for CO2 geologic storage in Denmark. Geophysics, 88(5), 1–57. Available from: https://doi.org/10.1190/geo2022‐0693.1
    [Google Scholar]
  26. Pasquet, S., Bodet, L., Dhemaied, A., Mouhri, A., Vitale, Q., Rejiba, F. et al. (2015) Detecting different water table levels in a shallow aquifer with combined P‐, surface and SH‐wave surveys: insights from VP/VS or Poisson's ratios. Journal of Applied Geophysics, 113, 38–50. Available from: https://doi.org/10.1016/j.jappgeo.2014.12.005
    [Google Scholar]
  27. Pertuz, T. & Malehmir, A. (2023a) Ultrahigh‐resolution 9C seismic survey in a landslide prone area in southwest of Sweden. Geophysical Journal International, 235(3), 2094–2106. Available from: https://doi.org/10.1093/gji/ggad346
    [Google Scholar]
  28. Pertuz, T. & Malehmir, A. (2023b) Ultrahigh‐resolution shear‐wave reflection imaging of vertical‐component data in a quick‐clay prone to landslide area in southwest Sweden. Geophysics, 88(3), B121–B133. Available from: https://doi.org/10.1190/geo2021‐0832.1
    [Google Scholar]
  29. Polom, U., Hansen, L., Sauvin, G., L'Heureux, J.‐S., Lecomte, I., Krawczyk, C.M. et al. (2010) 18. High‐resolution SH‐wave seismic reflection for characterization of onshore ground conditions in the Trondheim Harbor, Central Norway. In: Advances in near‐surface seismology and ground‐penetrating radar. Houston, TX, Society of Exploration Geophysicists, American Geophysical Union, Environmental and Engineering Geophysical Society. pp. 297–312. Available from: https://doi.org/10.1190/1.9781560802259.ch18
  30. Pugin, A.J.‐M., Pullan, S.E. & Hunter, J.A. (2009) Multicomponent high‐resolution seismic reflection profiling. The Leading Edge, 28(10), 1248–1261. Available from: https://doi.org/10.1190/1.3249782
    [Google Scholar]
  31. Pugin, A.J.‐M., Pullan, S.E. & Hunter, J.A. (2013) Shear‐wave high‐resolution seismic reflection in Ottawa and Quebec City, Canada. The Leading Edge, 32(3), 250–255. Available from: https://doi.org/10.1190/tle32030250.1
    [Google Scholar]
  32. Pugin, A.J.M. & Yilmaz, O. (2017) There is no pure P‐ or S‐wave land seismic source. In: SEG Technical Program Expanded Abstracts. Houston, TX, SEG. pp. 5162–5166. Available from: https://doi.org/10.1190/segam2017‐17650931.1
  33. Pugin, A. & Yilmaz, Ö. (2019) Optimum source‐receiver orientations to capture PP, PS, SP, and SS reflected wave modes. The Leading Edge, 38(1), 45–52. Available from: https://doi.org/10.1190/tle38010045.1
    [Google Scholar]
  34. Socco, L.V., Boiero, D., Foti, S. & Wisén, R. (2009) Laterally constrained inversion of ground roll from seismic reflection records. Geophysics, 74(6), G35–G45. Available from: https://doi.org/10.1190/1.3223636
    [Google Scholar]
  35. Socco, L.V., Comina, C. & Khosro Anjom, F. (2017) Time‐average velocity estimation through surface‐wave analysis: part 1—S‐wave velocity. Geophysics, 82(3), U49–U59. Available from: https://doi.org/10.1190/geo2016‐0367.1
    [Google Scholar]
  36. Surlyk, F., Damholt, T. & Bjerager, M. (2006) Stevns Klint, Denmark: uppermost Maastrichtian chalk, Cretaceous–Tertiary boundary, and lower Danian bryozoan mound complex. Bulletin of the Geological Society of Denmark, 54, 1–48. Available from: https://doi.org/10.37570/bgsd‐2006‐54‐01
    [Google Scholar]
  37. Tryggvason, A., Rögnvaldsson, S.T. & Flóvenz, G. (2002) Three‐dimensional imaging of the P‐and S‐wave velocity structure and earthquake locations beneath Southwest Iceland. Geophysical Journal International, 151(3), 848–866. Available from: https://doi.org/10.1046/j.1365‐246X.2002.01812.x
    [Google Scholar]
  38. Van Zanen, L.S. (2004) Removing love waves from shallow seismic SH‐wave data. PhD Thesis. Delft: TU Delft. https://resolver.tudelft.nl/uuid:d467c131‐3e61‐47b1‐809a‐3b15f69b7765
  39. Wadas, S.H., Polom, U. & Krawczyk, C.M. (2016) High‐resolution shear‐wave seismic reflection as a tool to image near‐surface subrosion structures—a case study in Bad Frankenhausen, Germany. Solid Earth, 7(5), 1491–1508. Available from: https://doi.org/10.5194/se‐7‐1491‐2016
    [Google Scholar]
  40. Westgate, M., Kucinskaite, K., Konstantinidis, E., Malehmir, A., Papadopoulou, M., Gregersen, U. et al. (2025) Seismic imaging of halokinetic sequences and structures with high‐resolution, dual‐element acquisition, and processing: applications to the gassum structure in Eastern Jutland, Denmark. Earth and Space Science, 12(1), e2024EA004014. Available from: https://doi.org/10.1029/2024EA004014
    [Google Scholar]
  41. Yilmaz, Ö. (2021) Land seismic case studies for near‐surface modeling and subsurface imaging. Houston, TX: Society of Exploration Geophysicists. Available from: https://doi.org/10.1190/1.9781560803812
    [Google Scholar]
  42. Zappalá, S., Malehmir, A., Papadopoulou, M., Gregersen, U., Funck, T., Clausen, O.R. et al. (2024) Combined onshore and offshore wide scale seismic data acquisition and imaging for CCS exploration in Havnsø, Denmark. Geophysics, 89(4), B257–B272. Available from: https://doi.org/10.1190/geo2023‐0503.1
    [Google Scholar]
  43. Zappalà, S., Malehmir, A., Papadopoulou, M., Westgate, M., Putnaite, J., Markovic, M. et al. (2024) Reflection seismic acquisition for onshore CCS applications in Denmark—an overview. In: Fifth EAGE Global Energy Transition Conference & Exhibition (GET 2024). Utrecht, European Association of Geoscientists & Engineers. pp. 1–5. Available from: https://doi.org/10.3997/2214‐4609.202421062
/content/journals/10.1002/nsg.70010
Loading
/content/journals/10.1002/nsg.70010
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data processing; imaging; near‐surface; seismic; S‐wave

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error