1887
Volume 13 Number 3
  • E-ISSN: 1365-2117

Abstract

Many types of carbonate platforms have been described, from homoclinal ramps to rimmed shelves and a full spectrum of variations in between; the distinction between these different types can be problematic. Nevertheless, classification of carbonate platforms is not just a semantic or academic issue. For example, it is clearly important for the accurate interpretation of seismic images of facies geometry and for assessing the potential of stratigraphic traps. Even though predictive efficiency of conceptual models depends on the degree of comprehension of the genetic factors controlling depositional profiles and the distribution of facies belts, current models for classification of carbonate platforms are basically descriptive and mainly based on depositional profile, size, and attachment to or detachment from a landmass.

A genetic approach considers the variability of depositional profiles among carbonate platforms as a function of the type of sediment that was produced (basically grain size), the locus of sediment production, and the hydraulic energy. Three groups of carbonate‐producing biota may be distinguished according to their dependence upon light: (1) euphotic (good light) in shallow, wave‐agitated areas; (2) oligophotic (poor light) in deeper, commonly non‐wave‐agitated areas; and (3) photo‐independent biota in all water‐depth ranges.

Several platform types in wave‐dominated seas can be considered in relation to genetic factors, even when simplifying the many possible scenarios. Euphotic framework‐producing biota create rimmed shelves similar to modern reef platforms. Soft‐substrate‐dwelling biota, which produce gravel‐sized carbonate in the shallow euphotic zone, create flat‐topped open shelves. Oligophotic gravel‐producing biota, such as some larger foraminifera and red algae, generate distally steepened ramps. Mud‐dominated carbonate production, in either euphotic or oligophotic zones, generate homoclinal ramps. Carbonate production dominated by photo‐independent biota (crinoids, sponges, bryozoans, etc.) above wave base give rise to open shelves or ramps, depending upon grain size, but may produce mounds if carbonate production occurs below the base of wave/current sweeping.

Loading

Article metrics loading...

/content/journals/10.1046/j.0950-091x.2001.00152.x
2002-01-12
2024-10-10
Loading full text...

Full text loading...

References

  1. Ahr, W.M. (1973) The carbonate ramp – an alternative to the shelf model. Trans. Gulf Coast Assoc. Geol. Societies, 23, 221–225.
    [Google Scholar]
  2. Ahr, W.M. (1989) Sedimentary and tectonic controls on the development of an Early Mississippian carbonate ramp, Sacramento Mountains area, New Mexico. In: Controls on Carbonate Platform and Basin Development (Ed. by P.D. Crevello, J.L. Wilson, J.F. Sarg & J.F. Read), Soc. Econ. Paleont. Miner. Spec. Publ., 44, 203–212.
    [Google Scholar]
  3. Ahr, W.M. & StantonJr, R.J. (1994) Comparative sedimentology and paleontology of Waulsortian mounds and coeval level‐bottom sediments, lower Lake Valley Formation (lower Mississippian), Sacramento Mountains, New Mexico. Verhandlungen Geologischen Bundesanstalt, Wien, 50, 11–24.
    [Google Scholar]
  4. Aigner, T. (1982) Event‐stratification in nummulite accumulations and in shell beds from the Eocene of Egypt. In: Cyclic and Event Stratification (Ed. by G.Einsele & A.Seilacher ), pp. 248–262. Springer‐Verlag.
    [Google Scholar]
  5. Aigner, T. (1983) Facies and origin of nummulitic buildups: an example from the Giza Pyramids Plateau (middle Eocene, Egypt). Neues Jahrb Geol. Paläontol. Abhandlungen, 166, 347–368.
    [Google Scholar]
  6. Allen, J.R.L. (1970) Physical Processes of Sedimentation. Elsevier, New York, 433pp.
    [Google Scholar]
  7. Aurell, M., Badenas, B., Bosence, D.W.J., Waltham, D.A. (1998) Carbonate production and offshore transport on a Late Jurassic carbonate ramp (Kimmeridgian, Iberian basin, NE Spain): evidence from outcrops and computer modelling. In: Carbonate Ramps (Ed. by V.P.Wright & T.P.Burchette ), Geol. Soc. Spec. Publ. London,149, 137–161.
  8. Aurell, M., Bosence, D.W.J., Waltham, D.A. (1995) Carbonate ramp depositional systems from a late Jurassic epeiric platform (Iberian basin, Spain): a combined computer modelling and outcrop analysis. Sedimentology, 42, 75–94.
    [Google Scholar]
  9. Barnaby, R.J. & Read, J.F. (1990) Carbonate ramp to rimmed shelf evolution: Lower to Middle Cambrian continental margin, Virginia Appalachians. Geol. Soc. Am. Bull., 102, 391–404.
    [Google Scholar]
  10. Basso, D. (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr. Palaeoclim. Palaeoecol., 137, 173–187.
    [Google Scholar]
  11. Blanc, J.J. (1968) Sedimentary geology of the Mediterranean Sea. Oceanogr. March. Biol. Annu. Rev., 6, 377–454.
    [Google Scholar]
  12. Bosellini, A. & Ginsburg, R.N. (1971) Form and internal structure of Recent algal nodules (rhodolites) from Bermuda. J. Geol., 79, 669–682.
    [Google Scholar]
  13. Bosence, D.W.J. (1983) The occurrence and ecology of Recent rhodoliths – a review. In: Coated Grains (Ed. T.M.Peryt ), pp. 225–242. Springer‐Verlag, New York.
    [Google Scholar]
  14. Bosence, D.W.J. (1985) The ‘Coralligène’ of the Mediterranean – a recent analog for Tertiary coralline algal limestones. In: Paleoalgology: Contemporary Research and Applications (ed. by D.F.Toomey & M.H.Nitecki ), pp. 215–225. Springer‐Verlag, New York.
    [Google Scholar]
  15. Bosence, D.W.J. & Bridges, P.H. (1995) A review of the origin and evolution of carbonate mud‐mounds. In: Carbonate Mud‐Mounds Their Origin and Evolution (Ed. by C.L.V. Monty, D.W.J. Bosence, P.H. Bridges & B.R. Pratt), Int. Ass. Sedimentol. Spec. Publ., 23, 3–9.
    [Google Scholar]
  16. Bosence, D.W.J. & Pedley, H.M. (1982) Sedimentology and paleoecology of a Miocene coralline algal biostrome from the Maltese Islands. Palaeogeogr. Palaeoclim. Palaeoecol., 38, 9–43.
    [Google Scholar]
  17. Bosscher, H. & Schlager, W. (1992) Computer simulations of reef growth. Sedimentology, 39, 503–512.
    [Google Scholar]
  18. Brandner, R., Flügel, E., Senowbari‐Daryan, B. (1991) Microfacies of carbonate slope boulders: indicator of the source area (Middle Triassic: Mahlknecht Cliff, Western Dolomites). Facies, 25, 279–296.
    [Google Scholar]
  19. Brasier, M.D. (1975) An outline history of seagrass communities. Palaeontology, 18, 681.
    [Google Scholar]
  20. Buchbinder, B. (1996) Miocene carbonates of the Eastern Mediterranean, the Red Sea and the Mesopotamian Basin: geodynamic and eustatic controls. In: Models for Carbonate Stratigraphy from Miocene Reef Complexes of the Mediterranean Regions (Ed. by E. Franseen, M. Esteban, W.C. Ward & J.M. Rouchy). Soc. Econ. Paleont. Miner. Concepts in Sedimentology and Paleontology Series, 5, 89–96.
    [Google Scholar]
  21. Burchette, T.P. (1988) Tectonic control on carbonate platform facies distribution and sequence development: Miocene, Gulf of Suez. Sediment. Geol., 59, 179–204.
    [Google Scholar]
  22. Burchette, T.P. & Wright, V.P. (1992) Carbonate ramp depositional systems. Sediment. Geol., 79, 3–57.
    [Google Scholar]
  23. Buxton, M. & Pedley, H.M. (1989) A standardised model for Tethyan Tertiary carbonate ramps. J. Geol. Soc. London, 146, 746–748.
    [Google Scholar]
  24. Carannante, G., Cherchi, A., Simone, L. (1995) Chlorozoan versus foramol lithofacies in Upper Cretaceous rudist limestone. Palaeogeogr. Palaeoclim. Palaeoecol., 119, 137–154.
    [Google Scholar]
  25. Carannante, G., Graziano, R., Pappone, G., Ruberti, D., Simone, L. (1999) Depositional systemand response to sea level oscillations of the Sennonian rudist‐bearing carbonate shelves. Examples from central Mediterranean areas. Facies, 40, 1–24.
    [Google Scholar]
  26. Carannante, G., Graziano, R., Ruberti, D., Simone, L. (1997) Upper Cretaceous temperate‐type open shelves from northern (Sardinia) and southern (Apennines‐Apulia) Mesozoic Tethyan margins. In: Cool‐Water Carbonates (Ed. by N.P. James & J. Clarke),Soc. Econ. Paleont. Miner. Spec. Publ., 56, 309–325.
    [Google Scholar]
  27. Carannante, G., Severi, C., Simone, L. (1996) Off‐shelf transport along foramol (temperate‐type) open shelf margins: an example from the Miocene of the Central‐southern Apennines (Italy). Bull. Soc. Géol. France, 169, 277–288.
    [Google Scholar]
  28. Davies, G.R. (1970) Carbonate bank sedimentation, eastern Shark Bay, Western Australia. In: Carbonate Sedimentation and Environments, Shark Bay, Western Australia (Ed. by B.W. Logan, G.R. Davies, J.F. Read & D.E. Cebulski), Am. Assoc. Petrol. Geol. Mem., 13, 85–168.
    [Google Scholar]
  29. Davies, P.J. & Marshall, J.F. (1985) Halimeda bioherms – low energy reefs, northern Great Barrier Reef. Proceedings, 5th Int. Coral Reef Cong, 5, 1–7.
    [Google Scholar]
  30. Dietz, R.S. (1963) Wave‐base, marine profile of equilibrium, and wave‐built terraces: A critical appraisal. Geol. Soc. Am. Bull., 74, 971–990.
    [Google Scholar]
  31. Elrick, M. & Read, J.F. (1991) Cyclic‐ramp‐to‐basin carbonate deposits, Lower Mississippian, Wyoming and Montana: a combined field and computer modelling study. J. Sedim. Petrol., 61, 1194–1224.
    [Google Scholar]
  32. Esteban, M. (1996) An overview of Miocene reefs from Mediterranean areas: general trends and facies models. In: Models for Carbonate Stratigraphy from Miocene Reef Complexes of the Mediterranean Regions (Ed. by E. Franseen, M. Esteban, W.C. Ward & J.M. Rouchy), Soc. Econ. Paleont. Miner., Concepts in Sedimentology and Paleontology Series, 5, 3–53.
    [Google Scholar]
  33. Eva, A.N. (1980) Pre‐Miocene seagrass communities in the Caribbean. Palaeontology, 23, 231–236.
    [Google Scholar]
  34. Fornos, J.J. & Ahr, W.M. (1997) Temperate carbonates on a modern, low‐energy, isolated ramp: the Balearic platform, Spain. J. Sedim. Res., 67, 364–373.
    [Google Scholar]
  35. Ginsburg, R.N. & James, N.P. (1974) Holocene carbonate sediments of continental shelves. In: The Geology of Continental Margins (Ed. by C.A.Burk & C.L.Drake ), pp. 137–155. Springer‐Verlag.
    [Google Scholar]
  36. Gómez‐Pérez, I., Fernández‐Mendiola, P.A., García‐Mondéjar, J. (1998) Constructional dynamics for a Lower Cretaceous carbonate ramp (Gorbea Massif, north Iberia). In: Carbonate Ramps (Ed. by V.P. Wright & T.P. Burchette), Geol. Soc. Spec. Publ. London, 149, 229–252.
    [Google Scholar]
  37. Gómez‐Pérez, I., Fernández‐Mendiola, P.A., García‐Mondéjar, J. (1999) Depositional architecture of a rimmed carbonate platform (Albian, Gorbea, western Pyrenees). Sedimentology, 46, 337–356.DOI: 10.1046/j.1365-3091.1999.00217.x
    [Google Scholar]
  38. Hallock, P. (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr. Palaeoclim. Palaeoecol., 63, 275–291.
    [Google Scholar]
  39. Hallock, P. & Glenn, E.C. (1986) Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios, 1, 44–64.
    [Google Scholar]
  40. Hallock, P. & Schalager, W. (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1, 389–398.
    [Google Scholar]
  41. Handford, C.R. & Loucks, R.G. (1993) Carbonate depositional sequences and systems tracts – responses of carbonate platforms to relative sea‐level changes. In: Carbonate Sequence Stratigraphy: Recent Developments and Applications (Ed. by B. Loucks & R.J. Sarg), Am. Assoc. Petrol. Geol. Bull., 57, 3–41.
    [Google Scholar]
  42. Hine, A.C., Hallock, P., Harris, M.W., Mullins, H.T., Belknap, D.F., Jaap, W.C. (1988) Halimeda bioherms along an open seaway: Miskito Channel, Nicaraguan Rise, SW Caribbean Seas. Coral Reefs, 6, 173–178.
    [Google Scholar]
  43. Hine, A.C. & Mullins, H.T. (1983) The carbonate shelf‐slope break. In: The Shelf‐Break: Critical Interface on Continental Margins (Ed. by D.J.Stanley & G.T.Moore ), Soc. Econ. Paleontol. Miner. Spec. Publ., 33, 169–183.
  44. Hottinger, L. (1983) Neritic macroid genesis, an ecological approach. In: Coated Grains (Ed. by T.M.Peryt ), pp. 27–37. Springer‐Verlag, New York.
    [Google Scholar]
  45. Hottinger, L. (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull. Soc. Géol. France, 168, 491–505.
    [Google Scholar]
  46. Iryu, Y., Nakamori, T., Matsuda, S., Abe, O. (1995) Distribution of marine organisms and its ecological significance in the modern reef complex of the Ryukyu Islands. Sediment. Geol., 99, 243–258.
    [Google Scholar]
  47. James, N.P. & Bourque, P.A. (1992) Reefs And Mounds. In: Facies Models; Response to sea level change (Ed. by R.G.Walker and N.P.James ), pp. 323–347. Geological Association of Canada.
    [Google Scholar]
  48. James, N.P. & Mountjoy, E.W. (1983) Shelf‐slope break in fossil carbonate platforms: an overview. In: The Shelf‐Break: Critical Interface on Continental Margins (Ed. by D.J. Stanley & G.T. Moore), Soc. Econ. Paleontol. Miner. Spec. Publ., 33, 189–206.
    [Google Scholar]
  49. Jones, B. & Desrochers, A. (1992) Shallow platform carbonates. In: Facies Models: Response to Sea Level Change (Ed. by R.G.Walker & N.P.James ), pp. 277–301. Geological Association of Canada.
    [Google Scholar]
  50. Kendall, C.G.St.C. & Schlager, W. (1981) Carbonates and relative changes in sea level. Mar. Geol., 44, 181–212.
    [Google Scholar]
  51. Kenter, J.A.M. (1990) Carbonate platform flanks: slope angle and sediment fabric. Sedimentology, 37, 777–794.
    [Google Scholar]
  52. Laviano, A., Gallo Maresca, M., Tropeano, M. (1998) Stratigraphic organization of rudist biogenic beds in the Upper Cenomanian successions of the Western Murge (Apulia, Southern Italy). Geobios, Mém, Sp., 22, 159–168.
    [Google Scholar]
  53. Li, C., Jones, B., Blanchon, P. (1997) Lagoon‐shelf sediment exchange by storms – Evidence from foraminiferal assemblages, east coast of Grand Caiman, British West Indies. J. Sediment. Res., 67, 17–25.
    [Google Scholar]
  54. Loucks, R.G., Moody, R.T., Bellis, J.K., Brown, A.A. (1996) Regional depositional setting and pore network of the El Garia Fm. (Metlaoui Group, Lower Eocene), Offshore Tunisia. Abstracts of the Fifth Tunisian Petroleum Exploration Conference, pp. 147–171. ETAP, Tunis.
    [Google Scholar]
  55. McLean, D.J. & Mountjoy, E.W. (1993) Upper Devonian buildup‐margin and slope development in the southern Canadian Rocky Mountains. Geol. Soc. Am. Bull., 105, 1263–1283.
    [Google Scholar]
  56. Matteucci, R. & Pignatti, J.S. (1988) The taphonomy of Nummulites. Proceedings of the Fourth Symposium on Ecology and Paleoecology of Benthic Communities, pp. 183–198. Museo Regionale di Scienze Naturalli di Torino.
  57. Milliman, J.D. (1974) Marine Carbonates. Part 1, Recent Sedimentary Carbonates. Springer‐Verlag, New York, p. 375.
    [Google Scholar]
  58. Monty, C.L.V. (1995) The rise and nature of carbonate mud‐mounds: an introductory actualistic approach. In: Carbonate Mud‐Mounds Their Origin and Evolution (Ed. by C.L.V. Monty, D.W.J. Bosence, P.H. Bridges & B.R. Pratt), Int. Ass. Sedimentol. Spec. Publ., 23, 11–48.
    [Google Scholar]
  59. Neuweiler, F., Gautret, P., Thiel, V., Lange, R., Michaelis, W., Reitner, J. (1999) Petrology of Lower Cretaceous carbonate mud mounds (Albian, N. Spain): insights into organomineralic deposits of the geological record. Sedimentology, 46, 837–859.DOI: 10.1046/j.1365-3091.1999.00255.x
    [Google Scholar]
  60. Obrador, A., Pomar, L., Taberner, C. (1992) Late Miocene breccia of Menorca (Balearic Islands): a basis for the interpretation of a Neogene ramp deposit. Sediment. Geol., 79, 203–223.
    [Google Scholar]
  61. Pedley, M. (1996) Miocene reefs distributions and their associations in the central Mediterranean region: an Overview. In: Models for Carbonate Stratigraphy from Miocene Reef Complexes of the Mediterranean Regions (Ed. by E. Franseen, M. Esteban, W.C. Ward & J.M. Rouchy), Soc. Econ. Paleont. Miner., Concepts in Sedimentology and Paleontology Series, 5, 73–87.
    [Google Scholar]
  62. Pérès, J.M. & Picard, J. (1964) Nouveau manuel de bionomie benthique de la Mer Mediterranée. Rec. Trav. Stn. March. Endoume-Marseille Bull., 31:.
    [Google Scholar]
  63. Playford, P.E. (1980) Devonian ‘Great Barrier Reef’ of Canning Basin, Western Australia. Am. Assoc. Petrol. Geol. Bull., 64, 814–840.
    [Google Scholar]
  64. Playford, P.E., Hurley, N.F., Kerans, C., Middleton, M.F. (1989) Reefal platform development, Devonian of the Canning Basin, Western Australia. In: Controls on Carbonate Platform and Basin Development (Ed. by P.D. Crevello, J.L. Wilson, J.F. Sarg & J.F. Read),Soc. Econ. Paleont. Miner. Spec. Publ., 44, 187–202.
    [Google Scholar]
  65. Pomar, L. (in press) Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeogr. Palaeoclim. Palaeoecol.
  66. Pomar, L. & Ward, W.C. (1999) Reservoir‐scale heterogeneity in depositional packages and diagenetic patterns on a reef‐rimmed platform, Upper Miocene, Mallorca, Spain. Am. Assoc Petrol. Geol. Bull., 83, 1759–1773.
    [Google Scholar]
  67. Pomar, L., Ward, W.C., Green, D.G. (1996) Upper Miocene Reef Complex of the Llucmajor area, Mallorca, Spain. In: Models for Carbonate Stratigraphy from Miocene Reef Complexes of the Mediterranean Regions (Ed. by E. Franseen, M. Esteban, W.C. Ward & J.M. Rouchy), Soc. Econ. Paleont. Miner., Concepts in Sedimentology and Paleontology Series, 5, 191–225.
    [Google Scholar]
  68. Pratt, B.R. (1995) The origin, biota and evolution of deep‐water mud‐mounds. In: Carbonate Mud‐Mounds Their Origin and Evolution (Ed. by C.L.V. Monty, D.W.J. Bosence, P.H. Bridges & B.R. Pratt), Int. Assoc. Sedimentol. Spec. Publ., 23, 49–123.
    [Google Scholar]
  69. Read, J.F. (1982) Carbonate platforms of passive (extensional) continental margins: types, characteristics and evolution. Tectonophysics, 81, 195–212.
    [Google Scholar]
  70. Read, J.F. (1985) Carbonate platform facies models. Am. Assoc. Petrol. Geol. Bulletin, 69, 1–21.
    [Google Scholar]
  71. Read, J.F. (1998) Phanerozoic carbonate ramps from greenhouse, transitional and ice‐house worlds: clues from field and modelling studies. In: Carbonate Ramps (Ed. by V.P. Wright & T.P. Burchette), Geol. Soc. Spec. Publ. London, 149, 107–135.
    [Google Scholar]
  72. Reiss, Z. & Hottinger, L. (1984) The Gulf of Aqaba. In: Ecological Micropaleontology, Ecological Studies, Analysis and Synthesis, No. 50 (Ed. by W.D.Billings , O.L.Lange & H.Remmert ). Springer‐Verlag, Berlin.
    [Google Scholar]
  73. Rich, J.L. (1951) Three critical environments of deposition and criteria for recognition of rocks deposited in each of them. Geol. Soc. Am. Bull., 62, 1–20.
    [Google Scholar]
  74. Roberts, H.H., Aharon, P., Phipps, C.V. (1988) Morphology and sedimentology of Halimeda bioherms from the eastern Java Sea (Indonesia). Coral Reefs, 6, 161–172.
    [Google Scholar]
  75. Ros, J.D., Romero, J., Ballesteros, E., Gili, J.M. (1985) Diving in blue water: the benthos. In: The Western Mediterranean (Ed. by R.Margalef ), pp. 233–295. Pergamon Press, Oxford.
    [Google Scholar]
  76. Ross, D.J. & Skelton, P.W. (1993) Rudist formations of the Cretaceous: a palaeoecological, sedimentological and stratigraphical review. In: Sedimentology Review (Ed. by P.V.Wright ), pp. 73–91. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  77. Rothwell, G.W., Grauvogel‐Stamm, L., Mapes, G. (2000) An herbaceous fossil conifer: Gymnospermous ruderals in the evolution of Mesozoic vegetation. Palaeogeogr. Palaeoclim. Palaeoecol., 156, 139–145.
    [Google Scholar]
  78. Russo, F., Mastandrea, A., Neri, C. (1998) Evoluzione degli organismi costruttori nelle piataforme Triassiche delle Dolomiti (Italia). Mem. Della Soc. Geol. Italiana, 53, 479–488.
    [Google Scholar]
  79. Schlager, W. (1991) Depositional bias and environmental change – important factors in sequence stratigraphy. Sediment. Geol., 70, 109–130.
    [Google Scholar]
  80. Sonnenfeld, M.D. & Cross, T.A. (1993) Volume tric partitioning and facies differentiation within the Permian Upper San Andres Formation of Last Chance Canyon, Guadalupe Mountains, New Mexico. In: Carbonate Sequence Stratigraphy: Recent Developments and Applications (Ed. by B. Loucks & R.J. Sarg), Am. Assoc. Petrol. Geol. Mem., 57, 435–474.
    [Google Scholar]
  81. Swift, D.J.P., Stanley, D.J., Curay, J.R. (1971) Relict sediments on continental shelves: a reconsideration. J. Geol., 79, 322–346.
    [Google Scholar]
  82. Swift, D.J.P. & Thorne, J.A. (1991) Sedimentation on continental margins, I: a general model for shelf sedimentation. In: Shelf Sand and Sandstone Bodies (Ed. by D.J.P. Swift, G.F. Oertel, R.W. Tillman & J.A. Thorne), Int. Assoc. Sedimentol. Spec. Publ., 14, 3–31.
    [Google Scholar]
  83. Tinker, S.W. (1998) Shelf‐to‐basin facies distributions and sequence stratigraphy of a steep‐rimmed carbonate margin: Capitan depositional system, McKittrick Canyon, New Mexico and Texas. J. Sedim. Res., 68, 1146–1174.
    [Google Scholar]
  84. Török, A. (1998) Controls on development of Mid‐Triassic ramps: examples from southern Hungary. In: Carbonate Ramps (Ed. by V.P. Wright & T.P. Burchette), Geol. Soc. Spec. Publ. London, 149, 339–367.
    [Google Scholar]
  85. Tsuji, Y. (1993) Tide influenced high energy environments and rhodolith‐associated carbonate deposition on the outer shelf and slope off the Mikayo Islands, southern Ryukyu Island Arc, Japan. Mar. Geol., 113, 255–271.
    [Google Scholar]
  86. Tucker, M.E. (1990) Geological background to carbonate sedimentation. In: Carbonate Sedimentology (Ed. by M.E.Tucker & V.P.Wright ), pp. 28–69. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  87. Ward, W.B. (1999) Tectonic control on backstepping sequences revealed by mapping of Frasnian backstepped platforms, Devonian Reef Complexes, Napier Range, Canning Basin, Western Australia. In: Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops and Models (Ed. by P.M. Harris, A.H. Saller & J.A. Simo), Soc. Econ. Paleontol. Miner. Spec. Publ., 63, 47–74.
    [Google Scholar]
  88. Wheeler, H.E. (1964) Baselevel, lithosphere surface, and time‐stratigraphy. Geol. Soc. Am. Bull., 75, 599–610.
    [Google Scholar]
  89. Wilson, J.L. (1975) Carbonate Facies in Geologic History. Springer‐Verlag, New York.
    [Google Scholar]
  90. Wilson, P.A. & Roberts, H.H. (1992) Carbonate‐periplatform sedimentation by density flows: a mechanism for rapid off‐bank and vertical transport of shallow‐water fines. Geology, 20, 713–716.
    [Google Scholar]
  91. Wilson, P.A. & Roberts, H.H. (1995) Density cascading: off‐shelf sediment transport, evidence and implications, Bahama Banks. J. Sedim. Res., A65, 45–56.
    [Google Scholar]
  92. Wood, R. (1993) Nutrients, predation and the history of reef‐building. Palaios, 8, 526–543.
    [Google Scholar]
  93. Wood, R. (1995) The changing biology of reef‐building. Palaios, 10, 517–529.
    [Google Scholar]
  94. Wood, R., Dickson, J.A.D., Kirkland‐George, B. (1994) Turning the Capitan Reef upside down: a new appraisal of the ecology of the Permian Capitan Reef, Guadalupe Mountains, Texas and New Mexico. Palaios, 9, 422–427.
    [Google Scholar]
  95. Wright, V.P. (1987) The evolution of the early Carboniferous Limestone province in southwest Britain. Geol. Mag., 124, 477–480.
    [Google Scholar]
  96. Wright, V.P. & Burchette, T.P. (1996) Shallow‐water carbonate environments. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed. by H.G.Reading ), pp. 325–394. Blackwell Science Ltd, Oxford.
    [Google Scholar]
  97. Wright, V.P. & Burchette, T.P. (1998) Carbonate ramps: an introduction. In: Carbonate Ramps (Ed. by V.P. Wright & T.P. Burchette), Geol. Soc. Spec. Publ. London, 149, 1–5.
    [Google Scholar]
  98. Wright, V.P. & Faulkner, T.J. (1990) Sediment dynamics of Early Carboniferous ramps: a proposal. Geol. J., 25, 139–144.
    [Google Scholar]
/content/journals/10.1046/j.0950-091x.2001.00152.x
Loading
/content/journals/10.1046/j.0950-091x.2001.00152.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error