1887
Volume 13 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Detailed structural cross‐sections, analysis of extensional structures and palaeotemperatures obtained from primary fluid inclusions in quartz and calcite veins from the extensional Cameros Basin (N Spain) allow an interpretation of its thermal evolution and its geometric reconstruction to be constrained. The Cameros Basin underwent an extensional stage during the Late Jurassic to Early Cretaceous, with a maximum preserved thickness of Mesozoic deposits of about 9000 m. During the Tertiary, the basin was inverted, allowing a large part of the sedimentary sequence to be exposed. Extensional deformation in individual beds created N120E‐striking tension gashes in the synrift sequence, parallel to the master normal faults limiting the basin and dipping perpendicular to bedding. The extensional strain calculated from tension gashes varies between 4 and 12%. The number and thickness of veins increases the lower their position in the stratigraphic section. Palaeotemperatures were obtained from samples along a stratigraphic section comprising a thickness of 4000 m synrift deposits. Homogenization temperatures range from 107 to 225 °C. Palaeothermometric data and geometric reconstruction give a geothermal gradient of 27–41 °C km−1 during the extensional stage and allow an eroded section of at least 1500 m to be inferred. Low‐grade metamorphic assemblages in lutitic rocks of the deepest part of the basin presently exposed at surface imply conditions of 350–400 °C and less than 2 kbar, which implies a geothermal gradient of about 70 °C km−1. Since the metamorphic thermal peak is dated at 100 Ma, the path indicates a heating event during the late Albian, probably linked to the reaching of thermal equilibrium of the continental crust after extension. The results obtained support the hypothesis of a synclinal basin geometry, with vertical superposition of Lower Cretaceous sedimentary units rather than a model of laterally juxtaposed bodies onlapping the prerift sequence.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2001.00138.x
2001-12-23
2024-04-20
Loading full text...

Full text loading...

References

  1. Albarède, F. & Michard‐Vitrac, A. (1978) Datation de métamorphisme des terrains secondaires des Pyrénées par les métodes 39Ar–40Ar et 37Rb–87Sr; ses relations avec les péridotites associées. Bull. Soc. Géol. Fr., 20, 681–687.
    [Google Scholar]
  2. Allen, P.A. & Allen, J.R. (1990) Basin Analysis: Principles and Applications. Blackwell Science, Oxford.
    [Google Scholar]
  3. Alonso‐Azcárate, J., Barrenechea, J.F., Rodas, M., Mas, R. (1995) Comparative study of the transition between very low‐grade and low‐grade metamorphism in siliciclastic and carbonate sediments: Early Cretaceous, Cameros Basin (Northern Spain). Clay Minerals, 30, 407–419.
    [Google Scholar]
  4. Alonso‐Azcárate, J., Rodas, M., Bottrell, H., Raiswell, R., Velasco, F., Mas, J.R. (1999) Pathways and distances of fluid flow during low‐grade metamorphism: evidence from pyrite deposits of the Cameros Basin, Spain. J. Metamorphic Geol., 17, 339–348.
    [Google Scholar]
  5. Alvaro, M., Capote, R., Vegas, R. (1979) Un modelo de evolución geotectónica para la Cadena Celtibérica. Acta Geol. Hisp., 14, 172–177.
    [Google Scholar]
  6. Andrews‐Speed, C.P., Oxburgh, E.R., Cooper, B.A. (1984) Temperatures and depth‐dependent heat flow in Western North Sea. A.A.P.G. Bull., 68, 1764–1781.
    [Google Scholar]
  7. Angelier, J. (1994) Fault slip analysis and palaeostress reconstruction. In: Continental Deformation (ed. by P.L.Hancock ), pp. 53–100. Pergamon Press, Oxford.
    [Google Scholar]
  8. Aoyagi, K. & Asakawa, T. (1984) Paleotemperature analysis by authigenic minerals and its application to petroleum exploration. A.A.P.G. Bull., 68, 903–913.
    [Google Scholar]
  9. Arche, A. & López‐Gómez, J.V. (1996) Origin of the Permian‐ Triassic Iberian Basin, central‐eastern Spain. Tectonophysics, 266, 443–464.
    [Google Scholar]
  10. Arthaud, F., Mégard, F., Séguret, M. (1977) Cadre tectonique de quelques bassins sédimentaires. Bull. Centres Rech. Explor. Prod. Elf- Aquitaine, 1, 147–188.
    [Google Scholar]
  11. Arthaud, F. & Séguret, M. (1972) Sur l'origine tectonique de certains joints stylolitiques parallèles à la stratification: leur relation avec une phase de distension (exemple du Languedoc). Bull. Soc. Géol. Fr., 7, 12–17.
    [Google Scholar]
  12. Aurell, M., Meléndez, A., Sanromán, J., Guimerà, J., Roca, E., Salas, R., Alonso, A., Mas, R. (1992) Tectónica sinsedimentaria distensiva en el límite Triásico‐Jurásico en la Cordillera Ibérica. Procc. III Congreso Geológico España Y VIII Latinoamericano Geología, 1, 50–54.
    [Google Scholar]
  13. Barrenechea, J.F.F., Rodas, M., Mas, J.R. (1995) Clay minerals variations associated with diagenesis and low‐ grade metamorphism of Early Cretaceous sediments in the Cameros Basin, Spain. Clay Minerals, 30, 119–133.
    [Google Scholar]
  14. Blackwell, D.D. & Steele, J.L. (1989) Thermal conductivity of sedimentary rocks: measurement and significance. In: Thermal History of Sedimentary Basins: Methods and Case Histories (ed. by N.D.Naeser & T.H.McCulloh ), pp. 13–36. Springer‐Verlag, New York.
    [Google Scholar]
  15. Bodnar, R.J. & Vityk, M.O. (1995) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: Fluid Inclusions in Minerals: Methods and Applications(ed. by B.De Vivo & M.L.Frezzotti ), I.M.A. Short Course, pp. 117–130. Virginia Polytechnic Institute and State University, USA.
  16. Bowers, T.S. & Helgeson, H.C. (1983) Calculation of the thermodynamic and geochemical consequences of non ideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems: Equation of state for H2O–CO2–NaCl. Geochim. Cosmochim. Acta, 47, 1247–1275.
    [Google Scholar]
  17. Brown, P.E. & Haggeman, S.G. (1995) Macflinclor: A computer program for fluid inclusion data reduction and manipulation. In: Fluid Inclusions in Minerals: Methods and Applications(ed. by B.De Vivo & M.L.Frezzotti ), I.M.A. Short Course, pp. 231–250.
  18. Burrus, R.C. (1989) Paleotemperatures from fluid inclusions: advances in theory and technique. In: Thermal History of Sedimentary Basins. Methods and Case Histories (ed. by N.D.Naeser & T.H.McCulloh ), pp. 119–131. Springer‐Verlag, New York.
    [Google Scholar]
  19. Capote, R. (1983) La tectónica de la Cordillera Ibérica. In: Geología de España. Libro Jubilar de J.M. Rios, Vol. 2 (ed. by J.A.Comba ), pp. 108–120. ITGE, Madrid.
    [Google Scholar]
  20. Cartwright, I., Power, W.L., Oliver, N.H.S., Valenta, R.K., McLatchie, G.S. (1994) Fluid migration and vein formation during deformation and greenschist facies metamorphism at Ormiston Gorge, central Australia. J. Metamorphic Geol., 12, 373–386.
    [Google Scholar]
  21. Casas, A.M., Cortés, A.L., Maestro, A. (2000) Intra‐plate deformation and basin formation in the northern Iberian plate: origin and evolution of the Almazán Basin. Tectonics, 19, 258–289.
    [Google Scholar]
  22. Casas‐Sainz, A.M. (1993) Oblique tectonic inversion and basement thrusting in the Cameros Massif (Northern Spain). Geodinamica Acta, 6, 202–216.
    [Google Scholar]
  23. Casas‐Sainz, A.M. & Gil‐ImazA., (1998) Extensional subsidence, contractional folding and thrust inversion of the Eastern Cameros Massif, northern Spain. Geol. Rdsch., 86, 802–818.
    [Google Scholar]
  24. Casquet, A., Galindo, C., González‐Casado, J.M., Alonso, A., Mas, R., Rodas, M., García, E., Barrenechea, J.F. (1992) El metamorfismo en la cuenca de los Cameros. Geocronología e implicaciones tectónicas. Geogaceta, 11, 22–25.
    [Google Scholar]
  25. Clayton, R.N. & Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta, 27, 43–52.
    [Google Scholar]
  26. Clayton, R.N., O'Neil, J.R., Mayeda, T.K. (1972) Oxygen isotope exchange between quartz and water. J. Geophys. Res., 77, 3057–3067.
    [Google Scholar]
  27. De Caritat, P., Hutcheon, I., Walshe, J. (1993) Chlorite geothermometry: a review. Clays Clay Minerals, 41, 219–239.
    [Google Scholar]
  28. Diaz‐Martínez, E. (1988) El Cretácico inferior del sector del Jubera (norte de la Sierra de Los Cameros, La Rioja): relación entre tectónica y sedimentación. Procc. II Congreso Geológico España, 1, 67–70.
    [Google Scholar]
  29. Dunne, W.M. & Hancock, P.L. (1994) Palaeostress analysis of small‐scale brittle structures. In: Continental Deformation (ed. by P.L.Hancock ), pp. 101–120. Pergamon Press, Oxford.
    [Google Scholar]
  30. Essene, E.J. & Peacor, D.R. (1995) Clay mineral thermometry: a critical perspective. Clays Clay Minerals, 43, 540–553.
    [Google Scholar]
  31. Essene, E.J. & Peacor, D.R. (1997) Illite and smectite: metastable, stable, or unstable? Further discussion and a correction. Clays Clay Minerals, 45, 116–122.
    [Google Scholar]
  32. Etheridge, M.A., Wall, V.J., Vernon, R.H. (1983) High fluid‐pressures during regional metamorphism and deformation. J. Metamorphic Geol., 1, 205–226.
    [Google Scholar]
  33. Ferreiro, E., Ruiz, V., Lendínez, A., Lago, M., Meléndez, A., Pardo, G., Ardevol, L., Villena, J., Hernández, A., Alvaro, M., Gómez, J.J., Carls, P. (1991) Mapa y memoria explicativa de la Hoja 40 (Daroca) del Mapa Geológico Nacional a escala 1:200.000. ITGE, Madrid.
    [Google Scholar]
  34. Frey, M. (1987) Very low‐grade metamorphism of clastic sedimentary rocks. In: Low Temperature Metamorphism (ed. by M.Frey ). Blackie.
    [Google Scholar]
  35. Gehrig, M. (1980) Phasengleichgewichte und pVT‐Daten ternärer Mischingen aus Wasser, Kohlendioxid un Natriumchlorid bis 3 kbar und 500 °C. PhD Thesis, Karsruhe., Hochschulsammlung Naturwissenschaft: Chimie; Bd. 1.
  36. Goldberg, J.M., Guiraud, M., Maluski, H., Séguret, M. (1988) Caractères pétrologiques étâge du métamorphisme en contexte distensif du bassin sur décrochement de Soria (Crétacé inférieur, Nord Espagne). C. R. Acad. Sci. Paris, 307, 521–527.
    [Google Scholar]
  37. Goldstein, R.H. & Reynolds, T.J. (1994) Systematics on Fluid Inclusions in Diagenetic Minerals. Society for Sedimentary Geology Geology Short Course 31, S.E.P.M., Tulsa, OK.
    [Google Scholar]
  38. Goy, A., Gómez, J.J., Yébenes, A. (1976) El Jurásico de la Rama Castellana de la Cordillera Ibérica (Mitad Norte). I. Unidades Litoestratigráficas. Estudios Geológicos, 32, 391–423.
    [Google Scholar]
  39. Green, P.F., Duddy, I.A., Bray, R.J. (1995) Applications of thermal history reconstruction in inverted basins. In: Basin Inversion (ed. by J.G. Buchanan & P.G. Buchanan), Geol. Soc. Special Publication, 88, 149–165.
    [Google Scholar]
  40. Guimerà, J., Alonso, A., Mas, J.R. (1995) Inversion of an extensional‐ramp basin by a newly formed thrust: the Cameros basin (NSpain). In: Basin Inversion (ed. by J.G.Buchanan & P.G.Buchanan ), Geol. Soc. Special Publication, 88, 433–453.
  41. Guimerà, J. & Alvaro, M. (1990) Structure et évolution de la compression alpine dans la Chaîne Ibérique et la Chaîne Cotière Catalane (Espagne). Bull. Soc. Géol. France, 8, 339–348.
    [Google Scholar]
  42. Guiraud, M. (1983) Evolution tectono sédimentaire du bassin wealdien (Crétacé inferieur) en relais de décrochement de Logroño‐Soria (NW Espagne). III cycle Thesis, University of Montpellier.
  43. Guiraud, M. & Séguret, M. (1984) Releasing solitary overstep model for the Late Jurassic‐Early Cretaceous (Wealdien) Soria strike‐slip basin (North Spain). In: Strike‐Slip Deformation, Basin Formation and Sedimentation (ed. by K.T.Biddle & N.Cristhie‐Blick ), SEPM Special Publication, 37, 159–175.
  44. Hagen, E.S. & Surdam, R.C. (1989) Thermal evolution of Laramide‐Style Basins: Constraints from the Northern Bighorn Basin, Wyoming and Montana. In: Thermal History of Sedimentary Basins: Methods and Case Histories (ed. by N.D.Naeser & T. H.Mcculloh ), pp. 277–294. Springer‐Verlag, New York.
    [Google Scholar]
  45. Hancock, P.L. (1985) Brittle microtectonics: principles and practice. J. Struct. Geol., 7, 437–457.
    [Google Scholar]
  46. Hanor, J.S. (1979) The sedimentary genesis of hydrothermal fluids. In: Geochemistry of Hydrothermal Ore Deposits, 2nd edn (ed. by H.Barnes). Wiley, New York.
    [Google Scholar]
  47. Heydari, E. (1997) Hydrotectonic models of burial diagenesis in platform carbonates based on formation water geochemistry in North American sedimentary basins. In: Basin‐Wide Diagenetic Patterns: Integrated Petrologic, Geochemical and Hydrologic Considerations,SEPM Special Publication, 57, 53–78.
    [Google Scholar]
  48. Holland, T., Powell, R., Worley, B. (1998) Calculating phase diagrams involving solid solutions via non‐linear equations, with examples using Thermocalc. J. Metamorphic Geol., 16, 577–588.
    [Google Scholar]
  49. Jensen, R.P. & Doré, A.G. (1993) A recent Norwegian Shelf heating event‐fact or fantasy?. In: Basin Modelling: Advances and Applications (ed. by A.G.Doréet al. , ), Norwegian Petroleum Society Special Publication 3, pp. 85–106. Elsevier, Amsterdam.
    [Google Scholar]
  50. Juárez, M.T., Lowrie, W., Osete, M.L., Meléndez, G. (1998) Evidence of widespread Cretaceous remagnetisation in the Iberian Range and its relation with the rotation of Iberia. Earth Planetary Sci. Lett., 160, 729–743.
    [Google Scholar]
  51. Juárez, M.T., Osete, M.L., Meléndez, G., Langereis, C.G., Zijderverld, J.D.A. (1994) Oxfordian magnetostratigraphy of the Aguilón and Tosos sections (Iberian Range, Spain) and evidence of a pre‐Oligocene overprint. Physics Earth Planetary Interiors, 85, 195–211.
    [Google Scholar]
  52. Julivert, M. (1978) The areas of Alpine folded cover in the Iberian Meseta (Iberian Chain, Catalanides, etc.). In: Geological Atlas of Alpine Europe and Adjoining Alpine Areas, pp. 93–112. Elsevier, New York
    [Google Scholar]
  53. Kirschner, D.L., Sharp, Z.D., Masson, H. (1995) Oxygen isotope thermometry of quartz‐calcite veins: Unraveling the thermal‐tectonic history of the subgreenschist facies Morcles nappe (Swiss Alps). Geol Soc. Am. Bull., 107, 1145–1156.
    [Google Scholar]
  54. Lago, M., Pocovi, A., Bastida, J., Amigó, J.M. (1988) The alkaline magmatism in the Triassic–Liassic boundary of the Iberian Chain: geological and petrological characters. II Congreso Geológico España, Granada, Comunicaciones, 2, 31–34.
    [Google Scholar]
  55. Lanaja, J.M. (1987) Contribución de la Exploración Petrolífera Al Conocimiento de la Geología de España. Instituto Geológico y Minero de España, Madrid.
    [Google Scholar]
  56. Lerche, I. (1993) Theoretical aspects of problems in basin modelling. In: Basin Modelling: Advances and Applications (ed. by A.G.Doréet al. ), Norwegian Petroleum Society Special Publication 3, pp. 35–65. Elsevier, Amsterdam.
    [Google Scholar]
  57. Magara, K. (1976) Thickness of removed sedimentary rocks, paleoporepressure and paleotemperature, southwestern part of Western Canada Basin. AAPG Bull., 60, 554–565.
    [Google Scholar]
  58. Mas, J.R., Alonso, A., Guimerà, J. (1993) Evolución tectono sedimentaria de una cuenca extensional intraplaca: la cuenca finijurásica‐eocretácica de Los Cameros (La Rioja‐Soria). Rev. Soc. Geol. Esp., 6, 129–144.
    [Google Scholar]
  59. Mata Campo, M.P. (1997) Caracterización y evolución mineralógica de la Cuenca mesozoica de Cameros (Soria – La Rioja) . PhD Thesis, University of Zaragoza.
  60. Mata Campo, M.P., Gil‐Imaz, A., Casas‐Sainz, A., Pocovi Juan, A, Canals, A. (1996) La extensión cretácica en la Cuenca de Cameros: resultados del análisis estructural de grietas de cuarzo y del estudio de inclusiones fluidas. Geogaceta, 20, 893–896.
    [Google Scholar]
  61. Mata Campo, M.P., López‐Aguayo, F., Peacor, D.R. (1998) Evidence for a low‐P–T origin of cookeite polytypes in pelites of the Iberian Range (Spain): a TEM study. 17th Meeting of the International Mineralogical AssociationInternational Mineralogical Association, Toronto, Canada.
  62. Mata, M.P., Osacar, M.C., López‐Aguayo, F. (2000) Una aproximación al área fuente del Weald de Cameros: Datos geoquímicos. Geotemas, 1, (3) 263–265.
    [Google Scholar]
  63. McDonald, A.E., Von Rosenberg, D.U., Jines, W.R., Burke, W.H., Uhler, L.M. (1989) A simulator for the computation of paleotemperatures during basin evolution. In: Thermal History of Sedimentary Basins: Methods and Case Histories (ed. by N.D.Naeser & T.H.McCulloh ), pp. 277–294. Springer‐Verlag, Berlin.
    [Google Scholar]
  64. McKenzie, D.P. (1978) Some remarks on the development of sedimentary basins. Earth Planetary Sci. Lett., 40, 25–32.
    [Google Scholar]
  65. McRea, J.M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys., 18, 849–857.
    [Google Scholar]
  66. Merriman, R.J. & Frey, M. (1999) Patterns of very low‐grade metamorphism in metapelitic rocks. In: Low‐Grade Metamorphism (ed. by M.Frey & D.Robinson ), pp. 61–108. Blackwell Science, Oxford.
    [Google Scholar]
  67. Merriman, R.J. & Peacor, D.R. (1999) Very low‐grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Low‐Grade Metamorphism (ed. by M.Frey & D.Robinson ), pp. 10–61. Blackwell Science, Oxford.
    [Google Scholar]
  68. Miall, A.D. (1984) Principles of Sedimentary Basin Analysis. Springer‐Verlag, Berlin.
    [Google Scholar]
  69. Mullis, J. (1987) Fluid inclusions studies during very low‐grade metamorphism. In: Low Temperature Metamorphism (ed. by M.Frey ). Blackie, Glasgow.
    [Google Scholar]
  70. Muñoz, A., Soria, A.R., Canudo, J.I., Casas, A.M., Gil, A., Mata, M.P. (1997) Caracterización estratigráfica y sedimentológica del Albiense marino del borde Norte de la Sierra de Cameros. Implicaciones paleogeográficas. Cuad. Geol. Ibérica, 22, 139–163.
    [Google Scholar]
  71. Muñoz‐Jiménez, A. & Casas‐Sainz, A.M. (1996) The Rioja Trough (NSpain): tecto‐sedimentary evolution of a symmetric foreland basin. Basin Res., 9, 65–85.
    [Google Scholar]
  72. Muñoz‐Martín, A. & De Vicente, G. (1998) Cuantificación del acortamiento alpino y estructura en profundidad del extremo suroccidental de la Cordillera Ibérica (Sierras de Altomira y Bascuñana). Rev. Soc. Geol. Esp., 11, 233–252.
    [Google Scholar]
  73. Naeser, N.D., Naeser, C.W., McCulloh, T.H. (1989) The application of fission‐track dating to the depositional and thermal history of rocks in sedimentary basins. In: Thermal History of Sedimentary Basins. Methods and Case Histories (ed. by N.D.Naeser & T.H.McCulloh ), pp. 157–180. Springer Verlag, Berlin.
    [Google Scholar]
  74. Oliver, J. (1986) Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99–102.
    [Google Scholar]
  75. Platt, N.H. (1990) Basin evolution and fault reactivation in the Western Cameros Basin, Northern Spain. J. Geol Soc. London, 147, 165–175.
    [Google Scholar]
  76. Pocovi, A., Meléndez, A., Meléndez, G. (1997) Los aspectos más obvios del Jurásico de los Pirineos. Comunicaciones IV Congreso de Jurásico de España, Alcañiz, 17–19.
  77. Quigley, T.M. & McKenzie, A.S. (1988) The temperatures of oil and gas formation in the sub‐surface. Nature, 333, 549–552.
    [Google Scholar]
  78. Ramsay, J.G. & Huber, M.I. (1983) The Techniques of Modern Structural Geology, 1, Strain Analysis. Academic Press, London.
    [Google Scholar]
  79. Royden, L., Sclater, J.G., Herzen, P.V. (1980) Continental margin subsidence and heat flow: important parameters in formation of petroleum hydrocarbons. A.A.P.G. Bull., 64, 173–187.
    [Google Scholar]
  80. Salas, R. & Casas, A. (1993) Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228, 33–35.
    [Google Scholar]
  81. Salomon, J. (1980) Apparition des principales traits structuraux de la Sierra de Los Cameros (Chaîne Ibérique, Espagne du Nord) au Jurassique supérieur‐Crétacé inférieur. C. R. Acad. Sci. Paris, 290, 955–958.
    [Google Scholar]
  82. Sharp, Z.D. (1999) Application of stable isotope geochemistry to low‐grade metamorphic rocks. In: Low‐Grade Metamorphism (ed. by M.Frey & D.Robinson ), pp. 227–259. Blackwell Science, Oxford.
    [Google Scholar]
  83. Sharp, Z.D. & Kirchner, D.L. (1994) Quartz calcite oxygen isotope thermometry; a calibration based on natural isotopic variations. Geochim. Cosmochim. Acta, 58, 4491–4501.
    [Google Scholar]
  84. Sopeña, A., Virgili, C., Arche, A., Ramos, A., Hernando, S. (1983) El Triásico. In: Geología de España, Libro Jubilar J.M. Ríos, 2 (ed. by J.A.Comba ), pp. 47–63. Instituto Geológico y Minero de España.
    [Google Scholar]
  85. Ter Voorde, M. & Bertotti, G. (1994) Thermal effects of normal faulting during riftted basin formation, 1. A finite difference model. Tectonophysics, 240, 133–144.
    [Google Scholar]
  86. Tischer, G. (1966) El delta Weáldico de las montañas Ibéricas Occidentales y sus enlaces tectónicos. Notas Y Comunicaciones Instituto Geológico Y Minero España, 81, 53–78.
    [Google Scholar]
  87. Wall, V.J. & Etheridge, M.A. (1988) Regional metamorphic fluid migration: single pass or circulation?. E.O.S., 69, 464.
    [Google Scholar]
  88. Willett, S.D., Issler, D.R., Beaumont, C., Donelick, R.A., Grist, A.M. (1997) Inverse modelling of annealing of fission tracks in apatite: application to the thermal history of the Peace River Arch. region, Western Canada sedimentary basin. Am. J. Sci., 297, 970–1011.
    [Google Scholar]
  89. Yardley, B.W.D. & Botrell, S.H. (1992) Silica mobility and fluid movement during metamorphism of the Connemara schists, Ireland. J. Metamorphic Geol., 10, 453–464.
    [Google Scholar]
  90. Zhao, M.‐W., Behr, H.‐J., Ahrendt, H., Wemmer, K., Ren, Z.‐L., Zhao, Z.‐Y. (1996) Thermal and tectonic history of the Ordos Basin, China: evidence from apatite fission track analysis, vitrinite reflectance and K‐Ar dating. AAPG Bull., 80, 1110–1134.
    [Google Scholar]
  91. Ziegler, P.A. (1989) Geodynamic model for Alpine intra‐ plate compressional deformation in Western and Central Europe. In: Inversion Tectonics (ed. by M.A. Cooper & G.D. Williams), Geol. Soc. Spec. Publ., 44, 63–85.
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2001.00138.x
Loading
/content/journals/10.1046/j.1365-2117.2001.00138.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error