1887
Volume 13 Number 2
  • E-ISSN: 1365-2117

Abstract

The mechanisms driving subsidence in late orogenic basins are often not easily resolved on account of later fault reactivation and a rapidly changing stress field. Contained turbidites in such basins provide a unique opportunity of monitoring sea bed deformation and evolving bathymetry and hence patterns of subsidence during basin filling. A variety of interpretations have been proposed to explain subsidence in Neogene basins in SE Spain, including extensional, strike‐slip and thrust top mechanisms. Ponded turbidite sheets on the floor of the Neogene Sorbas Basin (SE Spain) were deposited by sand‐bearing currents which ran into enclosed bathymetric deeps where they underwent rapid suspension collapse. The structure and distribution of these sheets (and the thick mudstone caps which overlie them) act as a proxy for the containing sea bed bathymetry at the time of deposition. An analysis of the sheet architecture helps identify a trough‐axial zone of syndepositional faulting and reveals a westwards stepping of the ponding depocentre with time. Fault breaks at the sea bed influenced the position of flow arrest and the distribution of sandstone beds on the basin floor. Westward stepping of the deeper bathymetry was episodic and probably controlled by transverse faults. Re‐locations of the depocentre were accompanied by the destabilization of carbonate sand stores on the margins of the basin, resulting in the repeated emplacement of large‐volume carbonate megabeds and calciturbidites. The fill to the Sorbas Basin was shingled by the onset of compression in the east attributed to transfer of slip between intersecting strike‐slip fault strands. A sinistral fault (a splay of the Carboneras Fault System) propagated through the evolving basin fill from the east as the eastern part of the basin became inverted and the locus of subsidence migrated into the Tabernas area 20 km area to the west. The sedimentological analysis of the basin fill helps see through a late dextral overprint which ultimately juxtaposed basement rocks to the south against the inverted and upended basin, along a late slip‐modified unconformity. Conventional palaeostress analysis of fractures along the basin margin fails to see past this late dextral shearing event. Basin migration parallel to the E–W‐orientated basin axis, slip‐reversal (sinistral to dextral) and the active involvement of strike‐slip faults are now identified as important aspects of the evolution of the Sorbas Basin during the latestTortonian.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2001.00143.x
2002-01-12
2024-04-25
Loading full text...

Full text loading...

References

  1. Apps, G.M. (1987) Evolution of the Gres d'Annot Basin, SW Alps. Unpublished PhD Thesis , University of Liverpool.
  2. Baruffini, L., Cavalli, C., Papani, L. (1994) Detailed stratal correlation and stacking patterns of the Gremiasco and Lower Castagnola turbidite systems, Tertiary Piedmont Basin, Northwestern Italy. In: Submarine Fans and Turbidite Systems (ed. by P.Weimer , A. H.Bouma & B. F.Perkins ). GCSSEPM Foundation 15th Research Conference Volume, pp. 117–139. Gulf Coast Section, Society of Economic Paleontologists & Mineralogists Foundation, Houston.
  3. Ben‐Avraham, Z. & Garfunkel, Z. (1986) Character of transverse faults in the Elat pull‐apart basin. Tectonics, 5, 1161–1169.
    [Google Scholar]
  4. Bouma, A.H. (1987) Megaturbidite: an acceptable term?. In: Megaturbidites (ed. by L. J. Doyle and R. Bourrouilh), Geomar. Lett., 7, 63–67.
    [Google Scholar]
  5. Braga, J.C. & Martín, J.M. (1996) Geometries of reef advance in response to relative sea‐level changes in a Messinian (uppermost Miocene) fringing reef (Cariatiz reef, Sorbas Basin, SE Spain). Sediment. Geol., 107, 61–81.DOI: 10.1016/s0037-0738(96)00019-x
    [Google Scholar]
  6. Cloetingh, S., Van Der Beek, P.A., Van Rees, D., Roep, TH.B., Biermann, C., Stephenson, R.A. (1992) Flexural interaction and the dynamics of Neogene extensional basin formation in the Albor·n‐Betic region. In: Alborán Basin Special Issue (ed. by A. Maldonado ), Geomar. Lett., 12, 66–75.
  7. Comas, M.C., Platt, J.P., Soto, J.I., Watts, A.B. (1999) The origin and tectonic history of the Albor·n basin: insights from Leg 16 results. In: Proc. ODP, Sci. Results (ed. by R.Zahn , M. C.Comas & A.Klauss ), 555–580. ODP, College Station, TX.
    [Google Scholar]
  8. Cronin, B.T. (1995) Structurally‐controlled deep sea channel courses: examples from the Miocene of southeast Spain and the Alboran Sea, southwest Mediterranean. In: Characterisation of Deep Marine Clastic Systems (ed. by A. J. Hartley & D. J. Prosser), Spec. Publ. Geol. Soc. Lond., 94, 115–135.
    [Google Scholar]
  9. Crowell, J.C. (1982) The tectonics of the Ridge basin, southern California. In: Geological History of the Ridge Basin Southern California (ed. by J. C.Crowell & M. H.Link ), pp. 25–42. SEPM Pacific Section .
    [Google Scholar]
  10. Dabrio, C.J. (1990) Fan–delta facies associations in the late Neogene and Quaternary basins of southeastern Spain. In: Coarse‐Grained Deltas (ed. by A. Colella & D. B. Prior), Spec. Publ. Int. Assoc. Sediment., 10, 91–111.
    [Google Scholar]
  11. Frizon de Lamotte, D., Andrieux, J., Guezou, J.‐C. (1991) Cinématique des chevauchements néogenes dans l'Arc bético‐rifian: discussion sur les modeles géodynamiques. Bull. Soc. Gèol. France, 162, 611–626.
    [Google Scholar]
  12. Frizon de Lamotte, D., Guezou, J.‐C., Averbuch, O. (1995) Distinguishing lateral folds in thrust systems; examples from Corbieres (SW France) and Betic Cordilleras (SE Spain). J. Struct. Geol., 17, 233–244.
    [Google Scholar]
  13. De Larouziére, F.D., Bolze, J., Bordet, P., Hernandez, J., Montenat, C., Ott d'Estevou, P. (1988) The Betic segment of the lithospheric Trans‐Alboran shear zone during the Late Miocene. Tectonophysics, 152, 41–52.
    [Google Scholar]
  14. Edwards, D.A., Leeder, M.R., Best, J.L., Pantin, H.M. (1994) On experimental reflected density currents and the interpretation of certain turbidites. Sedimentology, 41, 437–461.
    [Google Scholar]
  15. Elliot, T., Apps, G., Davies, H., Evans, M., Ghibaudo, G., Graham, R.H. (1985) Field Excursion B: a structural and sedimentological traverse through the Tertiary foreland basin of the external Alps of south‐east France. International Symposium on Foreland Basins Guidebook, Excursion, 3, 39–73.
    [Google Scholar]
  16. Gradstein, F.M. & Ogg, J. (1996) A Phanerozoic time scale. Episodes, 19, 3–5.
    [Google Scholar]
  17. Haughton, P.D.W. (1994) Deposits of deflected and ponded turbidity currents, Sorbas Basin, southeastern Spain. J. Sediment. Res., A64, 223–246.
    [Google Scholar]
  18. Haughton, P.D.W. (2000) Evolving turbidite systems on a deforming basin floor, Tabernas, SE Spain. Sedimentology, 47, 497–518.DOI: 10.1046/j.1365-3091.2000.00293.x
    [Google Scholar]
  19. Iaccarino, S., Morlotti, E., Papani, G., Pelosio, G., Raffi, S. (1975) Lithostratigrafia e biostratigraphia di alcune serie Neogeniche della provinca di Almeria (Andalusia orientale, Spagna). Ateno Parmense, Acta Naturalia, 11, 237–313.
    [Google Scholar]
  20. Keller, J.V.A., Hall, S.H., Dart, C.J., Mcclay, K.R. (1995) Geology and evolution of the Carboneras Fault Zone. J. Geol. Soc. Lond., 152, 339–351.
    [Google Scholar]
  21. Kleverlaan, K. (1989a) Neogene history of the Tabernas basin, (SE Spain) and its Tortonian submarine fan development. Geol. Mjnb., 68, 421–432.
    [Google Scholar]
  22. Kleverlaan, K. (1989b) Three distinctive feeder‐lobe systems within one time slice of the Tortonian Tabernas fan, SE Spain. Sedimentology, 36, 25–45.
    [Google Scholar]
  23. Kneller, B. & McCaffrey, W. (1999) Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope: deflection, reflection and facies variation. J. Sedim. Res., 69, 980–991.
    [Google Scholar]
  24. Labaume, P., Mutti, E., Seguret, M. (1987) Megaturbidites: a depositional model from the Eocene of the SW‐Pyrenean Foreland Basin, Spain. Geo-Mar. Lett., 7, 91–101.
    [Google Scholar]
  25. Marjanac, T. (1987) Ponded megabeds and some characteristics of the Eocene Adriatic basin (Middle Dalmatia, Yugoslavia). Mem. Soc. Geol. Ital., 40, 241–249.
    [Google Scholar]
  26. Marjanac, T. (1996) Deposition of megabeds (megaturbidites) and sea level change in a proximal part of the Eocene‐Miocene flysch of central Dalmatia (Crotia). Geology, 24, 543–546.
    [Google Scholar]
  27. Martín, J.M., Braga, J.C., Riding, R. (1998) Messinian reefs and stromatolites of the Sorbas Basin, Almería, SE Spain. In: 15th IAS Field Trip Guide Book (ed. by A.Meléndez‐Hevia & A. R.Soria ), pp. 111–125. Instituto Tecnologico Geominero de España.
    [Google Scholar]
  28. Martín, J.M., Braga, J.C., Sanchez‐Almazo, I. (1999) The Messinian record of the outcropping marginal Alboran Basin deposits: significance and implications. In: Proc. ODP, Sci. Results (ed. by R.Zahn , M. C.Comas & A.Klauss ), pp. 543–551. ODP, College Station, TX.
    [Google Scholar]
  29. Montenat, C. & Ott d'Estevou, P. (1999) The diversity of late Neogene sedimentary basins generated by wrench faulting in the eastern Betic Cordillera, SE Spain. J. Petrol. Geol., 22, 61–80.
    [Google Scholar]
  30. Montenat, C., Ott d'Estevou, P., Larouziere, F.D., Bedu, P. (1987a) Origin geodynamique des bassins Neogenes du domaine Betique Oriental (Espagne). Total Compagnie Francaise Des Petroles, Notes Memoires, 21, 11–49.
    [Google Scholar]
  31. Montenat, C., Ott D'Estevou, P., Masse, P. (1987b) Tectonic‐sedimentary characters of the Betic Neogene basins evolving in a crustal transcurrent shear zone (SE Spain). Bull. C. R. Expl. Prod. Elf-Aquitaine, 11, 1–22.
    [Google Scholar]
  32. Nelson, C.H., Karabanov, E.B., Coleman, S.M., Escutia, C. (1999) Tectonic and sediment supply control of deep rift lake turbidite systems: Lake Baikal, Russia. Geology, 27, 163–166.
    [Google Scholar]
  33. Nilsen, T.H. & Sylvester, A.G. (1995) Strike‐slip basins. In: Tectonics of Sedimentary Basins (ed. by C. J.Busby & R. V.Ingersoll ), pp. 425–457. Blackwell Scientific, Cambridge, MA.
    [Google Scholar]
  34. Okay, A.I., Demtrbag, E., Kurt, H., Okay, N., Kuscu, I. (1999) An active, deep marine strike‐slip basin along the North Anatolian fault in Turkey. Tectonics, 18, 129–147.DOI: 10.1029/1998tc900017
    [Google Scholar]
  35. Ott d'Estevou, P. & Montenat, C. (1990) Le Bassin de Sorbas‐Tabernas. Doc. Trav. Líigal, 12–13, 101–128.
    [Google Scholar]
  36. Pantin, H.M. & Leeder, M.R. (1987) Reverse flow in turbidity currents: the role of internal solitons. Sedimentology, 34, 1143–1155.
    [Google Scholar]
  37. Pickering, K.T. & Hiscott, R.N. (1985) Contained (reflected) turbidity currents from the Middle Ordovician Cloridorme Formation, Quebec, Canada: an alternative to the antidune hypothesis. Sedimentology, 32, 373–394.
    [Google Scholar]
  38. Platt, J.P. & Vissers, R.L.M. (1989) Extensional collapse of thickened continental lithosphere: a working hypothesis for the Alboran Sea and the Gibraltar arc. Geology, 17, 540–543.
    [Google Scholar]
  39. Poisson, A.M., Morel, J.L., Andrieux, J., Coulon, M., Wernli, R., Guernet, C. (1999) The origin and development of Neogene basins in the SE Betic Cordillera (SE Spain): a case study of the Tabernas‐Sorbas and Huercal Overa basins. J. Petrol. Geol., 22, 97–114.
    [Google Scholar]
  40. Riding, R., Braga, J.C., Martín, J.M., Sánchez‐Almazo, I.M. (1998) Mediterranean Salinity Crisis: constraints from a coe‐eval marginal basin, Sorbas, SE Spain. Mar. Geol., 146, 1–20.DOI: 10.1016/s0025-3227(97)00136-9
    [Google Scholar]
  41. Sanz de Galdeano, C. (1989) Las fallas de desgarre del borde Sur de la cuenca de Sorbas‐Tabernas (Norte de Sierra Alhamilla, Almería, Cordilleras Béticas). Bol. Geol. Min., 73–85.
  42. Sanz de Galdeano, C. (1990) Geological evolution of the Betic Cordilleras in the western Mediterranean, Miocene to Present. Tectonophysics, 172, 107–119.
    [Google Scholar]
  43. Sanz de Galdeano, C. & Vera, J.A. (1992) Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Res., 4, 21–36.
    [Google Scholar]
  44. Scotney, P, Burgess, R. , Rutter, E.H. (2000) 40Ar/39Ar age of the Cabo de Gata volcanic series and displacements on the Carboneras fault zone, SE Spain.J. Geol. Soc. London, 157, 1003–1008.
    [Google Scholar]
  45. Sinclair, H.D. (1992) Turbidite sedimentation during Alpine thrusting: the Taveyannaz sandstones of eastern Switzerland. Sedimentology, 39, 837–856.
    [Google Scholar]
  46. Sinclair, H.D. (1994) The influence of lateral basinal slopes on turbidite sandstone deposition in the Annot sandstones of SE France. J. Sedim. Res., 64, 42–64.
    [Google Scholar]
  47. Stapel, G., Moeys, R., Biermann, C. (1996) Neogene evolution of the Sorbas basin (SE Spain) determined by paleostress analysis. Tectonophysics, 255, 291–305.DOI: 10.1016/0040-1951(95)00190-5
    [Google Scholar]
  48. Vissers, R.L.M., Platt, J.P., Van Der Wal, D. (1995) Late orogenic extension of the Betic Cordillera and the Alboran Domain: a lithospheric view. Tectonics, 14, 786–803.
    [Google Scholar]
  49. Weijermars, R. (1987) The Palomares brittle‐ductile shear zone of southern Spain. J. Struct. Geol., 9, 139–157.
    [Google Scholar]
  50. Weijermars, R., Roep, T.H.B., Van Den Eeckhout, B., Postma, G., Kleverlaan, K. (1985) Uplift history of a Betic fold nappe inferred from the Neogene‐Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almería, Sorbas and Tabernas Basins of the Betic Cordillera, SE Spain). Geol. Mijnb., 64, 379–411.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2001.00143.x
Loading
/content/journals/10.1046/j.1365-2117.2001.00143.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error