1887
Volume 13 Number 2
  • E-ISSN: 1365-2117

Abstract

A linear surface process model is used to examine the effect of different patterns of rock uplift on the evolution of the drainage network of the Swiss Alps. An asymmetric pattern of tectonic forcing simulates a phase of rapid retrothrusting in the south of the Swiss Alps (‘Lepontine’‐type uplift). A domal pattern of tectonic forcing in the north of the model orogen simulates the phase of the formation of the ‘Aar massif’, an external basement uplift in the frontal part of the orogenic wedge (‘Aar’‐type uplift).

Model runs using the ‘Lepontine’‐type uplift pattern result in a model mountain chain with a water divide in the zone of maximum uplift and orogen‐normal rivers. Model runs examining the effect of ‘Lepontine’‐type uplift followed by ‘Aar’‐type uplift show that the initially formed orogen‐normal river system and the water divide are both very stable and hardly affected by the additional uplift. This indifference to changes in tectonic forcing is mainly due to the requirement of a high model erosion capacity for the river systems in order to reproduce the exhumation data (high‐grade rocks in the south of the Swiss Alps point to removal of a wedge‐shaped nappe stack with a maximum thickness of about 25 km). The model behaviour is in agreement with the ancestral drainage pattern of the Alps in Oligocene and Miocene times and with the modern pattern observed in the Coast Range of British Columbia; in both cases river incision occurred across a zone of rapid uplift in the lower course of the rivers. The model behaviour does not, however, explain the modern drainage pattern in the Alps with its orogen‐parallel rivers.

When the model system is forced to develop two locally independent main water divides (simultaneous ‘Lepontine’‐ and ‘Aar’‐type uplift), a zone of reduced erosional potential forms between the two divides. As a consequence, the divides approach each other and eventually merge. The new water divide remains fixed in space independent of the two persisting uplift maxima. The model results suggest that spatial and temporal changes in tectonic forcing alone cannot produce the change from the orogen‐normal drainage pattern of the Swiss Alps in Oligocene–Miocene times to the orogen‐parallel drainage observed in the Swiss Alps today.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2001.00146.x
2002-01-12
2024-04-19
Loading full text...

Full text loading...

References

  1. Ahnert, F. (1984) Local relief and the height limits of mountain ranges. Am. J. Sci., 284, 1035–1055.
    [Google Scholar]
  2. Ahnert, F. (1987) Approaches to dynamic equilibrium in theoretical simulations of slope development. Earth Surf. Process. Landforms, 12, 3–15.
    [Google Scholar]
  3. Armstrong, A.C. (1980) Soils and slopes in a humid environment. Catena, 7, 327–338.
    [Google Scholar]
  4. Beaumont, C., Fullsack, P., Hamilton, J. (1992) Erosional control of active compressional orogens. In: Thrust Tectonics (ed. by K. R.McClay ), pp. 1–18. Chapman & Hall, London.
    [Google Scholar]
  5. Beaumont, C., Fullsack, P., Hamilton, J. (1994) Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere. Tectonophysics, 232, 119–132.
    [Google Scholar]
  6. Van Der Beek, P.A. & Braun, J. (1998) Numerical modelling of landscape evolution on geological time‐scales: a parameter analysis and comparison with the south‐eastern highlands of Australia. Basin Res., 10, 49–68.
    [Google Scholar]
  7. Begin, Z.B., Meyer, D.F., Schumm, S.A. (1981) Development of longitudinal profiles of alluvial channels in response to base‐level lowering. Earth Surf. Process. Landforms, 6, 49–68.
    [Google Scholar]
  8. Berger, A., Rosenberg, D., Schmid, S. (1996) Ascent, emplacement and exhumation of the Bergell pluton within the Southern Steep Belt of the Central Alps. Schweiz. Min. Petrog. Mitt., 76, 357–382.
    [Google Scholar]
  9. Braun, J. & Sambridge, M. (1997) Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization. Basin Res., 9, 27–52.
    [Google Scholar]
  10. Chase, C.G. (1992) Fluvial landsculping and the fractal dimension of topography. Geomorphology, 5, 39–57.
    [Google Scholar]
  11. Engi, M., Todd, C.S., Schmatz, D.R. (1995) Tertiary metamorphic conditions in the eastern Lepontine Alps. Schweiz. Min. Petrog. Mitt., 75, 347–369.
    [Google Scholar]
  12. Fielding, E., Isacks, B., Barazangi, M., Duncan, C. (1994) How flat is Tibet?Geology, 22, 163–167.
    [Google Scholar]
  13. Frey, M.
    , Desmons, J. & Neubauer, F . (Eds) (1999) Metamorphic maps of the Alps. Schweiz. Min. Petrog. Mitt., 79 (1).
  14. Froitzheim, N., Schmid, S., Conti, P. (1994) Repeated change from crustal shortening to orogen‐parallel extension in the Austroalpine units of Graubünden. Eclog. Geol. Helv., 87, 559–612.
    [Google Scholar]
  15. Giger, M. & Hurford, A.J. (1989) Tertiary intrusives of the Central Alps: Their Tertiary uplift, erosion, redeposition and burial in the South Alpine foreland. Eclog. Geol. Helv., 82, 857–866.
    [Google Scholar]
  16. Gilchrist, A.R., Kooi, H., Beaumont, C. (1994) The post‐Gondwana geomorphic evolution of southwestern Africa: Implications for the controls on landscape development from observations and numerical experiments. J. Geophys. Res., 99, 12211–12228.
    [Google Scholar]
  17. Handy, M.R., Herwegh, M., Kamber, B.S., Tietz, R., Villa, I.M. (1996) Geochronologic, petrologic and kinematic constraints on the evolution of the Err–Platte boundary, part of a fossil continent‐ocean suture in the Alps (eastern Switzerland). Schweiz. Min. Petrogr. Mitt., 76, 453–474.
    [Google Scholar]
  18. Hantke, R. (1984) Zur tertiären Relief‐ und Talgeschichte des Bergeller Hochgebirges, der zentralen Südalpen und der angrenzenden Gebiete. Eclog. Geol. Helv., 77, 327–361.
    [Google Scholar]
  19. Horton, R.E. (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull., 56, 275–370.
    [Google Scholar]
  20. Howard, A.D. (1965) Geomorphological systems – Equilibrium and dynamics. Am. J. Sci., 263, 305–312.
    [Google Scholar]
  21. Howard, A.D., Dietrich, W.E., Seidl, M.A. (1994) Modelling fluvial erosion on regional to continental scales. J. Geophys. Res., 99 (B7), 13971–13986.
    [Google Scholar]
  22. Hunziker, J.C., Desmons, J., Hurford, A.J. (1992) Thirty‐two years of geochronological work in the Central and Western Alps: a review on seven maps. Mém. de Géol. (Lausanne), 13:.
    [Google Scholar]
  23. Hunziker, J.C., Hurford, A.J., Calmback, L. (1997) Alpine cooling and uplift. In: Deep Structure of the Swiss Alps: Results of NRP 20 (ed. by O. A.Pfiffner , P.Lehner , P.Heitzmann , ST.Mueller & A.Steck ), pp. 260–264. Birkhäuser Verlag, Basel.
    [Google Scholar]
  24. Hurford, A.J. (1986) Cooling and uplift pattern in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib. Mineral. Petrol., 92, 413–427.
    [Google Scholar]
  25. Hurford, A.J., Flysch, M., Jäger, E. (1989) Unravelling the thermo‐tectonic evolution of the Alps: A contribution from fission track analysis and mica dating. In: Alpine Tectonics (ed. by M. P. Coward, D. Dietrich & R. G. Park), Spec. Publ. Geol. Soc. London, 45, 369–398.
    [Google Scholar]
  26. Jäckli, H. (1958) Der rezente Abtrag der Alpen im Spiegel der Vorlandsedimentation. Eclog. Geol. Helv., 5, 354–365.
    [Google Scholar]
  27. Jäger, E. (1973) Die alpine Orogenese im Lichte der radiometrischen Altersbestimmung. Eclogae Geol. Helv, 66, 11–21.
    [Google Scholar]
  28. Johnson, D.D. & Beaumont, C. (1994) Preliminary Results from a planform kinematic model of orogen evolution. In: Surface Processes and the Development of Clastic Foreland Basin Stratigraphy. Spec. Publ. Soc. Econ. Paleont. Miner., 52:.
    [Google Scholar]
  29. Kooi, H. & Beaumont, C. (1994) Escarpment evolution on high‐elevated rifted margins: Insights derived from a surface processes model that combines diffusion, advection and reaction. J. Geophys. Res., 99 (B6), 12191–12209.
    [Google Scholar]
  30. Kooi, H. & Beaumont, C. (1996) Large‐scale geomorphology: classical concepts reconciled and integrated with contemporary ideas via a surface processes model. J. Geophys. Res, 101 (B2), 3361–3386.
    [Google Scholar]
  31. Koons, P.O. (1989) The topographic evolution of collisional mountain belts: a numerical look at the Southern Alps, New Zealand. Am. J. Sci., 289, 1041–1069.
    [Google Scholar]
  32. Kühni, A. & Pfiffner, O.A. (in press) The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250 m DEM. Geomorphology. (Int. J. Pure Appl. Geomorph.), :in press.
    [Google Scholar]
  33. Laubscher, H.P. (1983) Detachment, shear and compression in the central Alps. Geol. Soc. Am. Mem., 158, 191–211.
    [Google Scholar]
  34. Mancktelow, N.S. (1985) The Simplon Line: a major displacement zone in the western Lepontine Alps. Eclog. Geol. Helv., 78, 73–96.
    [Google Scholar]
  35. Mancktelow, N.S. (1992) Neogene lateral extension during convergence in the Central Alps: Evidence from interrelated faulting and backfolding around the Simplon pass (Switzerland). Tectonophysics, 215, 295–317.
    [Google Scholar]
  36. Mathews, W.H. (1991) Physiographic evolution of the Canadian Cordillera. In: Geology of the Cordilleran Orogen in Canada. Geological Survey of Canada, Geology of Canada, 4, 403–418. (also Geological Society of America, The Geology of North America, v. G‐2) (ed. by H.Gabrielse & C. J. Yorath). Ministry of Supply & Services, Canada, Ottawa.
  37. Meyre, C., Marquer, D., Schmid, S.M., Ciancaleoni, L. (1999) Syn‐orogenic extension along the Forcola fault: Correlation of Alpine deformations in the Tambo and Adula nappes (Eastern Penninic Alps). Eclog. Geol. Helv., 91, 409–420.
    [Google Scholar]
  38. Michalski, I. & Soom, M. (1990) The Alpine thermo‐tectonic evolution of the Aar and Gotthard massifs, Central Switzerland: Fission Track ages on zircon and apatite and K‐Ar mica ages. Schweiz. Min. Petrog. Mitt, 70, 373–387.
    [Google Scholar]
  39. Milnes, A.G. (1974) Structure of the Penninic zone (Central Alps): a new working hypothesis. Geol. Soc. Am. Bull., 85, 1727–1732.
    [Google Scholar]
  40. Nievergelt, P., Liniger, M., Froitzheim, N., Mählmann, R.F. (1996) Early to mid Tertiary crustal extension in the Central Alps: the Turba Mylonite Zone (Eastern Switzerland). Tectonics, 15, 329–340.
    [Google Scholar]
  41. Pfiffner, O.A. (1986) Evolution of the north Alpine foreland basin in the Central Alps. Spec. Publ. Int. Ass. Sediment., 8, 219–228.
    [Google Scholar]
  42. Pfiffner, O.A. (1993) Palinspastic Reconstruction of the Pre‐Triassic Basement Units in the Alps: The Central Alps. In: Pre‐Mesozoic Geology in the Alps (ed. by J. F.Von Raumer & F.Neubauer ). Springer‐Verlag, Berlin.
    [Google Scholar]
  43. Pfiffner, O.A., Ellis, S., Beaumont, C. (2000) Collision tectonics in the Swiss Alps: insight from geodynamic modeling. Tectonics, 19, 1065–1094.
    [Google Scholar]
  44. Pfiffner, O.A., Sahli, S., Stäuble, M. (1997) Compression and uplift of the external massifs in the Helvetic zone. In: Deep Structure of the Swiss Alps: Results of NRP 20 (ed. by O. A.Pfiffner , P.Lehner , P.Heitzmann , ST.Mueller & A.Steck ), pp. 139–153. Birkhäuser Verlag, Basel.
    [Google Scholar]
  45. Rosenberg, C., Berger, A., Schmid, S.M. (1995) Observations from the floor of a granitoid pluton: a constraint on the driving force of final emplacement. Geology, 23, 443–446.
    [Google Scholar]
  46. Schlunegger, F. (1999) Controls of surface erosion on the evolution of the Alps: constraints from the stratigraphies of the adjacent foreland basins. Int. J. Earth Sci., 88, 285–304.
    [Google Scholar]
  47. Schlunegger, F., Leu, W., Matter, A. (1998) Crustal thickening and crustal extension as controls on the evolution of the drainage network of the central Swiss Alps between 30 Ma and the present: constraints from the stratigraphy of the North Alpine Foreland Basin and the structural evolution of the Alps. Basin Res., 10, 197–212.
    [Google Scholar]
  48. Schlunegger, F., Matter, A., Burbank, D.W., Klaper, E.M. (1997a) Magnetostratigraphic constraints on relationships between evolution of the central Swiss Molasse basin and Alpine orogenic events. Geol. Soc. Am. Bull., 109, 225–241.
    [Google Scholar]
  49. Schlunegger, F., Matter, A., Burbank, D.W., Leu, W., Mange, M., Màtyàs, J. (1997b) Sedimentary sequences, seismofacies and evolution of depositional systems of the Oligo/Miocene Lower Freshwater Molasse Group, Switzerland. Basin Res., 9, 1–26.
    [Google Scholar]
  50. Schlunegger, F. & Willett, S.D. (1999) Spatial and temporal variations in exhumation of the central Swiss Alps and implications for exhumation mechanisms. In: Exhumation Processes: Normal Faulting, Ductile Flow and Erosion (ed. by M. T. Brandon & S. D. Willett), Geol. Soc. Lond. Spec. Publ., 154, 157–179.
    [Google Scholar]
  51. Schmid, S.M., Pfiffner, O.A., Froitzheim, N., Schönborn, G., Kissling, E. (1996) Geophysical‐geological transsect and tectonic evolution of the Swiss‐Italian Alps. Tectonics, 15, 1036–1064.
    [Google Scholar]
  52. Schmid, S.M., Pfiffner, O.A., Schönborn, G., Froitzheim, N., Kissling, E. (1997a) Integrated cross section and tectonic evolution of the Alps along the Eastern Traverse. In: Deep Structure of the Swiss Alps: Results of NRP 20 (ed. by O. A.Pfiffner , P.Lehner , P.Heitzmann , ST.Mueller & A.Steck ), pp. 289–304. Birkhäuser Verlag, Basel.
    [Google Scholar]
  53. Schmid, S.M., Pfiffner, O.A., Schreurs, G. (1997b) Rifting and collision in the Penninic zone of eastern Switzerland. In: Deep Structure of the Swiss Alps: Results of NRP 20 (ed. by O. A.Pfiffner , P.Lehner , P.Heitzmann , ST.Mueller & A.Steck ). Birkhäuser Verlag, Basel.
    [Google Scholar]
  54. Schmid, S.M., Zingg, A., Handy, M. (1987) The kinematics of movements along the Insubric Line and the emplacement of the Ivrea zone. Tectonophysics, 135, 47–66.
    [Google Scholar]
  55. Soom, M. (1990) Abkühlungs‐ und Hebungsgeschichte der Externmassive und der penninischen Decken beidseits der Simplon‐Rhone Linie seit dem Oligozän: Spaltspurdetierungen an Apatit/Zirkon und K‐Ar Datierungen an Biotit/Muskovit (Westliche Zentralalpen). PhD Thesis , University of Bern, Switzerland.
  56. Stampfli, G.M. & Marchant, R.H. (1997) Geodynamic evolution of the Tethyan margins of the Western Alps. In: Deep Structure of the Swiss Alps: Results of NRP 20 In: (Ed. by O. A.Pfiffner , P.Lehner , P.Heitzmann , ST.Mueller & A.Steck ), pp. 223–240. Birkhäuser Verlag, Basel.
  57. Summerfield, M.A. & Hulton, N.J. (1994) Natural controls of fluvial denudation rates in major world drainage basins. J. Geophys. Res., 99/87, 13,871–13,883.
    [Google Scholar]
  58. Todd, C.S. & Engi, M. (1997) Metamorphic field gradients in the Central Alps. J. Metamorphic Geol., 15, 513–530.
    [Google Scholar]
  59. Trümpy, R. (1960) Palaeotectonic evolution of the Central and Western Alps. Bull. Geol. Soc. Am., 71, 843–908.
    [Google Scholar]
  60. Trümpy, R. (1971) Stratigraphy in mountain belts. Quart. J. Geol. Soc. London, 126, 293–318.
    [Google Scholar]
  61. Tucker, G.E. & Slingerland, R.L. (1994) Erosional dynamics, flexural isostasy, and long‐lived escarpments: a numerical modelling study. J. Geophys. Res., 99, 12229–12243.
    [Google Scholar]
  62. Tucker, G.E. & Slingerland, R. (1996) Predicting sediment flux from fold and thrust belts. Basin Res., 8, 329–349.
    [Google Scholar]
  63. Wagner, G.A., Reimer, G.A., Jäger, E. (1977) Cooling ages derived by apatite fission‐track, mica Rb‐Sr and K‐Ar dating: the uplift and cooling history of the Central Alps. Mem. Ist. Geol. Padova, XXX:, 1–28.
    [Google Scholar]
  64. Willett, S., Beaumont, C., Fullsack, P. (1993) Mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21, 371–374.
    [Google Scholar]
  65. Willgoose, G., Bras, R.L., Rodriguez‐Iturbe, I. (1991) A physically based coupled channel network growth and hillslope evolution model, 2: applications. Water Resour. Res., 27, 1671–1684.
    [Google Scholar]
  66. Wolman, M.G., Church, M., Newbury, R., Lapointe, M., Frenette, M., Andrews, E.D., Lisle, T.E., Buchanan, J.P., Schumm, S.A., Winkley, B.R. (1990) The riverscape. In: Surface water hydrology: The Geology of North America, v. 0–1 (ed. by M. G.Wolman & H. C.Riggs ). Geological Society of America, Boulder, Colorado.
    [Google Scholar]
  67. Ziegler, P.A., Schmid, S.M., Pfiffner, A., Schönborn, G. (1996) Structure and evolution of the Central Alps and their northern and southern foreland basins. In: Peri‐Tethis Memoir 2: Structure and Prospects of Alpine Basins and Forelands (ed. by P. A.Ziegler & F.Horvàth ), Mém. Mus. natn. Hist. nat., 170, 211–233.
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2001.00146.x
Loading
/content/journals/10.1046/j.1365-2117.2001.00146.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error