1887
Volume 13 Number 2
  • E-ISSN: 1365-2117

Abstract

The intracratonic basins of central Australia are distinguished by their large negative Bouguer gravity anomalies, despite the absence of any significant topography. Over the Neoproterozoic to Palaeozoic Officer Basin, the anomalies attain a peak negative amplitude in excess of 150 mGal, amongst the largest of continental anomalies observed on Earth. Using well data from the Officer and Amadeus basins and a data grid of sedimentary thicknesses from the eastern Officer Basin, we have assessed the evolution of these intracratonic basins. One‐dimensional backstripping analysis reveals that Officer and Amadeus basin tectonic subsidence was not entirely synchronous. This implies that the basins evolved as discrete geological features once the Centralian Superbasin was dismembered into its constituent basins. Two‐ and three‐dimensional backstripping and gravity modelling suggest that the eastern Officer Basin evolved from a broad continental sag into a region of intracratonic flexural subsidence from the latest Neoproterozoic, when flexure of the lithosphere deepened the northern basin. The results from gravity modelling improve when the crust is thickened beneath the northern margin of the basin and thinned at the southern margin, as has been suggested by recent deep seismic data. The crustal thickening beneath the basin's northern margin abuts the region of greatest topographic relief and is consistent with the observed structure at the edges of many orogenic belts. If the Officer Basin evolved as a foreland‐type basin from the late Proterozoic and has retained those features to the present, then one implication is that in the absence of any significant topography, cratonic lithosphere must be able to support stresses over very long periods of geological time.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2001.00147.x
2002-01-12
2024-04-25
Loading full text...

Full text loading...

References

  1. Athy, L.F. (1930) Density, porosity and compaction of sedimentary rocks. Bull. Am. Ass. Petrol. Geol., 14, 217–238.
    [Google Scholar]
  2. Audet, D.M. (1995) Modelling of porosity evolution and mechanical compaction of calcareous sediments. Sedimentology, 42, 355–373.
    [Google Scholar]
  3. Babel Workinc Group.
    Babel Workinc Group. (1990) Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield. Nature, 348, 34–38.
    [Google Scholar]
  4. Baldwin, B. & Butler, C.O. (1985) Compaction curves. Bull. Am. Ass. Petrol. Geol., 69, 622–626.
    [Google Scholar]
  5. Beaumont, C. (1981) Foreland basins. Geophys. J. R. Astron. Soc., 65, 291–329.
    [Google Scholar]
  6. Bechtel, T.D., Forsyth, D.W., Sharpton, V.L., Grieve, R.A. (1990) Variations in effective elastic thickness of the North American lithosphere. Nature, 343, 636–638.
    [Google Scholar]
  7. Beekman, E., Stephenson, R.A., Korsch, R.J. (1997) Mechanical stability of the Redbank Thrust Zone, central Australia: dynamic and rheological implications. Aust. J. Earth Sci., 44, 215–226.
    [Google Scholar]
  8. Bond, G. C. & Kominz, M.A.
    Bond, G. C. & Kominz, M.A. (1991) Disentangling middle Paleozoic sea level and tectonic events in cratonic margins and cratonic basins of North America. J. Geophys. Res., 96, 6619–6639.
    [Google Scholar]
  9. Bond, G.C., Nickeson, P.A., Kominz, M.A. (1984) Breakup of a supercontinent between 625 Ma and 555 Ma; new evidence and implications for continental histories. Earth Planet. Sci. Lett., 70, 325–345.
    [Google Scholar]
  10. Brunet, M.‐F. & Le Pichon, X. (1982) Subsidence of the Paris Basin. J. Geophys. Res., 87, 8547–8560.
    [Google Scholar]
  11. Burov, E.B. & Diament, M. (1998) The effective elastic thickness (T e) of continental lithosphere: what does it really mean?J. Geophys. Res., 100, 3905–3927.
    [Google Scholar]
  12. Burov, E.B. & Molnar, P. (1998) Gravity anomalies over the Ferghana Valley (central Asia) and intracontinental deformation. J. Geophys. Res., 103, 18137–18152.
    [Google Scholar]
  13. Buschbach, T.C. & Kolata, D.R. (1990) Regional setting of Illinois Basin. In: Interior Cratonic Basins (Ed. by W. Leighton, D. R. Kolata, D. E. Oltz & J. J. Eidel), Am. Ass. Petrol. Geol. Mem., 51, 29–55.
    [Google Scholar]
  14. Calvert, A.L., Sawyer, E.W., Davis, W.J., Ludden, J.N. (1995) Archaean subduction inferred from seismic images of a mantle suture in the superior province. Nature, 375, 670–674.
    [Google Scholar]
  15. Cartwright, I. & Buick, I.S. (1999) The flow of surface derived fluids through Alice Springs age middle‐crustal ductile shear zones, Reynolds Range, central Australia. J. Metamorphic Geol., 17, 397–414.
    [Google Scholar]
  16. Catacosinos, R.A., Daniels, P.A., Harrison, W.B. (1990) Structure, stratigraphy, and petroleum geology of the Michigan Basin. In: Interior Cratonic Basins (Ed. by M. W. Leighton, D. R. Kolata, D. E. Oltz & J. J. Eidel), Am. Ass. Petrol. Geol. Mem., 51, 561–601.
    [Google Scholar]
  17. Cloetingh, S., Burov, E., Poliakov, A. (1999) Lithosphere folding: Primary response to compression? (from central Asia to Paris basin). Tectonics, 18, 1064–1083.DOI: 10.1029/1999tc900040
    [Google Scholar]
  18. Cloetingh, S. & Wortel, R. (1986) Stress in the Indo‐Australian Plate. Tectonophysics, 132, 49–67.
    [Google Scholar]
  19. Comacho, A. & McDougall, I. (2000) Intracratonic strike‐slip partitioned transpression and the formation and exhumation of eclogite facies rocks: an example from the Musgrave Block, central Australia. Tectonics, 19, 978–996.
    [Google Scholar]
  20. Daly, M.C., Lawrence, S.R., Diemu‐Tshiband, K., Matouana, B. (1992) Tectonic evolution of the Cuvette Centrale, Zaire. J. Geol. Soc. Lond., 149, 539–546.
    [Google Scholar]
  21. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  22. DeRito, R.E., Cozzarelli, F.A., Hodge, D.S. (1983) Mechanisms of subsidence of ancient cratonic rift basins. Tectonophysics, 94, 141–168.
    [Google Scholar]
  23. Dewey, J.F. (1982) Plate tectonics and the evolution of the British Isles. J. Geol. Soc. Lond., 139, 371–412.
    [Google Scholar]
  24. Diaconescu, C.C., Knapp, J.H., Brown, L.D., Steer, D.N., Stiller, M. (1998) Precambrian Moho offset and tectonic stability of the East European platform from the URSEIS deep seismic profile. Geology, 26, 211–214.
    [Google Scholar]
  25. Dickinson, W.R. (1974) Plate tectonics and sedimentation. In: Plate Tectonics and Sedimentation (Ed. by W. R. Dickinson), Spec. Publ. Soc. Econ. Palaeont. Miner., 22, 1–27.
    [Google Scholar]
  26. Fowler, C.M.R. & Nisbet, E.G. (1985) The subsidence of the Williston Basin. Can. J. Earth Sci., 22, 408–415.
    [Google Scholar]
  27. Gibb, R.A. & Thomas, M.D. (1976) Gravity signature of fossil plate boundaries in the Canadian Shield. Nature, 262, 199–200.
    [Google Scholar]
  28. Goleby, B.R., Shaw, R.D., Wright, C., Kennett, B.L.N., Lambeck, K. (1989) Geophysical evidence for ‘thick‐skinned’ crustal deformation in central Australia. Nature, 337, 325–330.
    [Google Scholar]
  29. Goleby, B.R., Wright, C., Collins, C.D.N., Kennett, B.L.N. (1988) Seismic reflection and refraction profiling across the Arunta Block and the Ngalia and Amadeus basins. Aust. J. Earth Sci., 35, 275–294.
    [Google Scholar]
  30. Gravestock, D.I. & Hibburt, J.E. (1988) Sequence stratigraphy of the Eastern Officer and Arrowie basins: a framework for Cabrian oil search. J. Aust. Petrol. Expl. Ass., 31, 177–190.
    [Google Scholar]
  31. Green, J.C. (1983) Geological and geochemical evidence for the nature and development of the middle Proterozoic (Keweenawan) mid‐continent rift of North America. Tectonophysics, 94, 413437.
    [Google Scholar]
  32. Green, A.G., Weber, W., Hajnal, Z. (1985) Evolution of Proterozoic terrains beneath the Williston Basin. Geology, 13, 624–628.
    [Google Scholar]
  33. Grotzinger, J. & Royden, L. (1990) Elastic strength of the Slave craton at 1.9 Gyr and implications for the thermal evolution of the continents. Nature, 347, 64–66.
    [Google Scholar]
  34. Haddad, D. & Watts, A.B. (1999) Subsidence history, gravity anomalies and flexure of the northeast Australian margin in Papua New Guinea. Tectonics, 18, 827–842.
    [Google Scholar]
  35. Hand, M., Mawby, J., Kinny, P., Foden, J. (1999) U–Pb ages from the Hart's Range, central Australia: evidence for early Ordovician extension and constraints on Carboniferous metamorphism. J. Geol. Soc. Lond., 156, 715–730.
    [Google Scholar]
  36. Hocking, R.M., Mory, A.J., Williams, 1.R. (1994) An atlas of Neoproterozoic and Phanerozoic basins of Western Australia (1994). In: The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium (Ed. by P. G.Purcell & R. R.Purcell ), pp. 21–43. Petrol. Expl. Soc. Aust.
    [Google Scholar]
  37. Jordan, T. (1981)Thrust loads and foreland basin evolution. Bull. Am. Ass. Petrol. Geol., 65, 2506–2520.
    [Google Scholar]
  38. Karlstrom, K.E., Harlan, S.S., Williams, M.L., Mclelland, L., Geissman, J.W., Ahäll, K‐I. (1999) Refining Rodinia: geologic evidence for the Australia–western U.S. connection in the Proterozoic. GSA Today, 9, 1–7.
    [Google Scholar]
  39. Karner, G.D., Steckler, M.S., Thorne, J.A. (1983) Long‐term thermo‐mechanical properties of the continental lithosphere. Nature, 304, 250–253.
    [Google Scholar]
  40. Knapp, J.H., Steer, D.N., Brown, L.D., Berzin, R., Suleimanovember, A., Stiller, M., Lueschen, E., Brown, D.L., Bulgakov, R., Kashubin, S.N., Rybalka, A.V. (1996) Lithospheric scale seismic image of the southern Urals from explosion‐source reflection profiling. Science, 274, 226–228.DOI: 10.1126/science.274.5285.226
    [Google Scholar]
  41. Korsch, R.L., Goleby, B.R., Leven, J.H., Drummond, B.J. (1998) Crustal architecture of central Australia based on deep seismic reflection profiling. Tectonophysics, 288, 57–69.DOI: 10.1016/s0040-1951(97)00283-7
    [Google Scholar]
  42. Lambeck, K. (1983) Structure and evolution of the intracratonic basins of central Australia. Geophys. J. R. Astron. Soc., 74, 843–886.
    [Google Scholar]
  43. Lambeck, K., Burgess, G., Shaw, R.D. (1988) Teleseismic travel‐time anomalies and deep crustal structure in central Australia. Geophys. J., 94, 105–124.
    [Google Scholar]
  44. Lambeck, K. & Penney, C. (1984) Teleseismic travel time anomalies and crustal structure in central Australia. Phys. Earth Planet. Interiors, 34, 46–56.
    [Google Scholar]
  45. Lindsay, J.F. (1987) Sequence stratigraphy and depositional controls in late Proterozoic‐Early Cambrian sediments of Amadeus Basin, central Australia. Bull. Am. Ass. Petrol. Geol., 71, 1387–1403.
    [Google Scholar]
  46. Lindsay, J.F. (1995) Geological Atlas of the Officer Basin, South Australia.Australian Geological Survey Organisation and Department of Mines and Energy, South Australia, 30 plates.
    [Google Scholar]
  47. Lindsay, J.F. (1999a) The Heavitree quartzite, a Neoproterozoic (c. 800–760 Ma), high‐energy, tidally influenced, ramp association, Amadeus Basin, central Australia. Aust. J. Earth Sci., 46, 127–149.DOI: 10.1046/j.1440-0952.1999.00693.x
    [Google Scholar]
  48. Lindsay, J.F. (1999b) Geological Atlas of the Officer Basin, South Australia (CD‐ROM edition). Australian Geological Survey Organisation Record 1999/43, 30 plates.
    [Google Scholar]
  49. Lindsay, J.F. & Korsch, R.J. (1989) Interplay of tectonics and sea level changes in basin evolution: an example from the intracratonic Amadeus Basin, central Australia. Basin Res., 2, 3–25.
    [Google Scholar]
  50. Lindsay, J.E., Korsch, R.J., Wilford, J.R. (1987) Timing the breakup of a Proterozoic supercontinent: evidence from Australian intracratonic basins. Geology, 15, 1061–1064.
    [Google Scholar]
  51. Lindsay, J.F. & Leven, J.H. (1996) Evolution of a Neoproterozoic to Palaeozoic intracratonic setting, Officer Basin, South Australia. Basin Res., 8, 403–424.
    [Google Scholar]
  52. Lowry, A.R. & Smith, R.B. (1996) Strength and rheology of the western U.S. Cordillera. J. Geophys. Res., 100, 17947–17963.
    [Google Scholar]
  53. Maboko, M.A.H., McDougall, I., Zeitler, P.K., Williams, 1.S. (1992) Geochronological evidence for – 530–550 Ma juxtaposition of two Proterozoic metamorphic terranes in the Musgrave Ranges, central Australia. Aust. J. Earth Sci., 39, 457–471.
    [Google Scholar]
  54. Madon, M.B. & Watts, A.B. (1998) Gravity anomalies, subsidence history and the tectonic evolution of the Malay and Penyu Basins (offshore Peninsula Malaysia). Basin Res., 10, 375392.
    [Google Scholar]
  55. Mathews, S.C. & Cowie, J.W. (1979) Early Cambrian transgressions. J. Geol. Soc. Lond., 136, 133–135.
    [Google Scholar]
  56. Mathur, S.R. (1977) Gravity anomalies and crustal structure‐a review. Bull. Aust. Soc. Expl. Geophys., 8, 111–117.
    [Google Scholar]
  57. McAdoo, D.C. & Sandwell, D.T. (1985) Folding of oceanic lithosphere. J. Geophys. Res., 90, 8563–8569.
    [Google Scholar]
  58. McQueen, H.W.S. & Beaumont, C. (1989) Mechanical models of tilted block basins. In: Origin and Evolution of Sedimentary Basins and Their Mineral Resources (Ed. by R. A. Price), AGU/IUGG Monograph, 48, 65–71.
    [Google Scholar]
  59. Moussavi‐Harami, R. & Gravestock, D., (1995) 1. Burial history of the eastern Officer Basin, South Australia. Bull. Aust. Petrol. Expl. Ass., 35, 307–320.
    [Google Scholar]
  60. Nelson, K.D., Baird, D.L., Walters, J.L., Hauck, M., Brown, L.D., Oliver, J.E., Ahern, J.L., Hmnal, Z., Jones, A.G., Sloss, L.L. (1993) Trans‐Hudson orogen and 33 williston basin in Montana and North Dakota: New COCORP deep‐profiling results. Geology, 21, 447–450.
    [Google Scholar]
  61. Perrodon, A. & Zabek, J. (1990) Paris Basin. In: Interior Cratonic Basins (Ed. by M. W. Leighton, D. R. Kolata, D. F. Oltz & J. J. Eidel), Am. Ass. Petrol. Geol. Mem., 51, 633–679.
    [Google Scholar]
  62. Piper, J.D.A. (1983) Proterozoic palaeomagnetism and single continent plate tectonics. Geophys. J. R. Astron. Soc., 74, 163–197.
    [Google Scholar]
  63. Plumb, K.A. (1979) The tectonic evolution of Australia. Earth Sci. Rev., 14, 205–249.
    [Google Scholar]
  64. Powell, C.M., Priess, M.V., Gatehouse, C.G., Krapez, B., Li, Z.X. (1994) South Australian record of a Rodinian epicontinental basin and its mid‐Neoproterozoic breakup (‐700 Ma) to form the Palaeo‐Pacific Ocean. Tectonophysics, 237, 113–140.
    [Google Scholar]
  65. Preiss, W.V. & Forbes, B.G. (1981) Stratigraphy, correlation and sedimentary history of Adelaidean (Late Proterozoic) basins in Australia. Precamb. Res., 15, 255–304.
    [Google Scholar]
  66. Royer, L.‐Y. & Gordon, R.G. (1997) The motion and boundary between the Capricorn and Australian plates. Science, 277, 1268–1274.DOI: 10.1126/science.277.5330.1268
    [Google Scholar]
  67. Shaw, R.D., Etheridge, M.A., Lambeck, K. (1991) Development of the Late Proterozoic to mid‐Palaeozoic, intracratonic Amadeus Basin in central Australia: a key to understanding tectonic forces in plate interiors. Tectonics, 10, 688–721.
    [Google Scholar]
  68. Stephenson, R. & Lambeck, K. (1985) Isostatic response of the lithosphere with in‐plane stress: application to central Australia. J. Geophys. Res., 90, 8581–8588.
    [Google Scholar]
  69. Sukanta, U. (1993) Sedimentology, sequence stratigraphy and palaeogeography of marinoan sediments in the eastern Officer Basin, South Australia. PhD thesis, Flinders University of South Australia.
  70. Turcotte, D.L. & Schubert, G. (1982) Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley and Sons, New York.
    [Google Scholar]
  71. Vail, P.R. & Thompson, S. (1977) Seismic stratigraphy and global changes of sea level, part 3: relative changes of sea level from coastal onlap. In: Stratigraphy – Application to Hydrocarbon Exploration (Ed. by C. E. Payton), Am. Ass. Petrol. Geol. Mem., 26, 63–81.
    [Google Scholar]
  72. Veevers, J.J. & Welhinny, M.W. (1976) The separation of Australia from other continents. Earth Sci. Rev., 12, 139–159.
    [Google Scholar]
  73. Vidotti, R.M., Ebinger, C.J., Fairhead, J.D. (1998) Gravity signature of the western Parand Basin, Brazil. Earth Planet. Sci. Lett., 159, 117–132.DOI: 10.1016/s0012-821x(98)00070-3
    [Google Scholar]
  74. Walter, M.R., Veevers, J.L., Calver, C.R., Grey, K., Hilyard, D. (1992) The Proterozoic Centralian Superbasin: a frontier petroleum province. Bull. Am. Ass. Petrol. Geol., 76, 1132.
    [Google Scholar]
  75. Walter, M.R. & Gorter, J.D. (1994) The Neoproterozoic Centralian Superbasin in Western Australia. In: The Sedimentary Basins of Western Australia: Proceedings of the Petroleum Exploration Society of Australia Symposium (Ed. by P. G.Purcell & R.R.Purcell ), pp. 851–964. Petrol. Expl. Soc. Aust.
    [Google Scholar]
  76. Walter, M.R., Grey, K., Williams, I.R., Calver, C.R. (1994) Stratigraphy of the Neoproterozoic to early Palaeozoic Savory Basin, Western Australia, and correlation with the Amadeus and Officer basins, Australia. Aust. J. Earth Sci., 41, 533–546.
    [Google Scholar]
  77. Walter, M.R., Veevers, J.L., Calver, C.R., Grey, K. (1995) Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precamb. Res., 73, 173–195.
    [Google Scholar]
  78. Watts, A.B. (1978) An analysis of isostasy in the world's oceans 1: Hawaiian–Emperor seamount chain. J. Geophys. Res., 83, 5989–6004.
    [Google Scholar]
  79. Watts, A.B. (1988) Gravity anomalies, crustal structure and flexure of the lithosphere at the Baltimore Canyon Trough. Earth Planet. Sci. Lett., 89, 221–238.
    [Google Scholar]
  80. Watts, A.B. (1992) The effective elastic thickness of the lithosphere and the evolution of fore∼ land basins. Basin Res., 4, 169–178.
    [Google Scholar]
  81. Weissel, J.K., Anderson, R.N., Geller, C.A. (1980) Deformation of the IndoAustralian Plate. Nature, 287, 284–291.
    [Google Scholar]
  82. Wellman, P. (1982) Australian seismic refraction results, isostasy and altitude anomalies. Nature, 298, 838–841.
    [Google Scholar]
  83. Wingate, M.T.D., Campbell, I.H., Compston, W., Gibson, G.M. (1998) Ion microprobe U‐Pb ages for Neoproterozoic basaltic magmatism in south‐central Australia and implications for the breakup of Rodinia. Precamb. Res., 87, 135–159.
    [Google Scholar]
  84. Wright, C., Goleby, B.R., Collins, C.D.N., Korsch, R.L., Barton, T., Green‐Halgh, S.A., Sugmarto, S. (1990) Deep seismic profiling in central Australia. Tectonophysics, 173, 247–256.
    [Google Scholar]
  85. Zalán, P.V., Wolff, S., Astolfi, M.A.M., Vieira, I.S., Cão, J.C., Appi, V.T., Neto, E.V.S., Cerqueira, J.R., Marques, A. (1990) The Parand Basin, Brazil. In: Interior Cratonic Basins (Ed. by W. Leighton, D. R. Kolata, D. E. Oltz & J. J. Eidel), Am. Ass. Petrol. Geol. Mem., 51, 681–708.
    [Google Scholar]
  86. Zhao, J.X. & McCulloch, M.T. (1993) Sm–Nd mineral isochron ages of Late Proterozoic dyke swarms in Australia: evidence for two distinctive events of mafic magmatism and crustal extension. Chem. Geol., 109, 341–354.
    [Google Scholar]
  87. Zhao, J.X. & McCulloch, M.T. (1995) Geochemical and Nd isotopic systematics of granites from the Arunta Inlier, central Australia: implications for Proterozoic crustal evolution. Precamb. Res., 71, 265–299.
    [Google Scholar]
  88. Zhao, J.X., McCulloch, M.T., Korsch, R.J. (1994) Characteristic of a plume‐related 800 Ma magmatic event and its implications for basin formation in central‐southern Australia. Earth Planet. Sci. Lett., 121, 349–367.
    [Google Scholar]
  89. Zoback, M.D., Stephenson, R.A., Cloetingh, S., Larsen, B.T., Hoorn, B.V., Robinson, A., Horvath, F., Pumdefabregas, C., Ben‐Avraham, Z. (1993) Stresses in the lithosphere and sedimentary basin formation. Tectonophysics, 226, 1–13.
    [Google Scholar]
  90. Zuber, M.T., Bechtel, T.D., Forsyth, D.W. (1989) Effective elastic thickness of the lithosphere, and mechanisms of isostatic compensation in Australia. J. Geophys. Res., 94, 9353–9367.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2001.00147.x
Loading
/content/journals/10.1046/j.1365-2117.2001.00147.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error