1887
Volume 15, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstracts

The aim of this paper is to quantify the evolution in time and space of the accommodation (space available for sedimentation) in the case of a growth fault structure resulting from gravity‐induced extension comprising a listric fault/raft system located along the West African margin. To achieve this, use was made of an original approach combining two complementary techniques (accommodation variation measurements and 3‐D restoration) in order to quantify vertical and horizontal displacement related to deformation, using a data set made up of a 3‐D seismic survey and well logs. We applied sequence stratigraphic principles to (i) define a detailed stratigraphic framework for the Albo‐Cenomanian and (ii) measure subsidence rates from accommodation variations. 3‐D restoration was used to (iii) reconstruct the evolution of the 3‐D geometry of the fault system. The rates of horizontal displacement of structural units were measured and linked to successive stages in the growth of the fault system.

Subsidence of the structural units exhibits three scales of variation: (1) long‐term variation (10 Ma) of c. 80 m Ma−1 for a total subsidence of about 1400 m, compatible with the general subsidence of a passive margin, and (2) short‐term variations (1–5 Ma) corresponding to two periods of rapid subsidence (about 150–250 m Ma−1) alternating with periods of moderate subsidence rate (around 30 m Ma−1). These variations are linked to the development of the fault system during the Albian (with downbuilding of the raft and development of the initial basin located in between). During the Cenomanian, the development of the graben located between the lower raft and the initial basin did not seem to affect the vertical displacements. (3) High‐frequency variations (at the scale of genetic unit sets) range between −50 and 250 m for periods of 0.2–2 Ma. Accommodation variations governed these cycles of progradation/retrogradation rather than sediment flux variations. In addition, the nine wells display a highly consistent pattern of variation in accommodation. This suggests that the genetic unit sets were controlled at a larger scale than the studied system (larger than 20 km in wavelength), for example, by eustatic variations. Translation rates are between 3 and 30 times higher than subsidence rates. Therefore, in terms of amplitude, the main parameter controlling the space available for sedimentation is the structural development of the fault system, that is to say, the seaward translation of the raft units, itself resulting from a regional gravity‐driven extension.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2003.00200.x
2003-05-28
2024-04-25
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Allen, J.R. (1990) Basin Analysis. Principles and Applications. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  2. Aurisano, R.W. (1992) Palynostratigraphy, graphic correlation and the Albian–Cenomanian boundary offshore Gabon and Congo. Mem. Bull. Centres Rech. Explo. Prod. Elf, 13, 347–363.
    [Google Scholar]
  3. Burollet, P.F. (1975) Tectonique en radeaux en Angola. Bull. Soc. Géol. France, XXII, 503–504.
    [Google Scholar]
  4. Cross, T.A. & Lessenger, M.A. (1998) Sediment volume partitioning: rationale for stratigraphic model evaluation and high‐resolution stratigraphic correlation. In: Sequence Stratigraphy – Concepts and Applications. (Ed. by F.M.Gradstein , K.O.Sandvik & N.J.Milton ) pp. 171–195, Norvegian Petroleum Society (NPF), Spec. Publ. 8.
    [Google Scholar]
  5. Dahlstrom, C.D.A. (1969) Balanced cross section. Can. J. Earth Sci., 6, 743–757.
    [Google Scholar]
  6. Doyle, J.A., Jardiné, S. & Doerenkamp, A. (1982) Afropollis, a new genus of early angiosperm pollen with notes on the Cretaceous palynostratigraphy and paleoenvironments of northern Gondwana. Bull. Centres Rech. Explor. Prod. Elf, 6, 13–117.
    [Google Scholar]
  7. Dromart, G., Allemand, P. & Quiquerez, A. (1998) Calculating rates of syndepositional normal faulting in the western margin of the Mesozoic Subalpine Basin (south‐east France). Basin Res., 10, 235–260.
    [Google Scholar]
  8. Duval, B., Cramez, C. & Jackson, M.P.A. (1992) Rafts tectonics in the Kwanza Basin, Angola. Marine Petrol. Geol., 9, 389–404.
    [Google Scholar]
  9. Gibbs, A.D. (1983) Balanced cross‐section construction from seismic sections in areas of extensional tectonics. J. Struct. Geol., 5, 153–160.
    [Google Scholar]
  10. Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., VanVeen, P., Thierry, J. & Huang, Z. (1994) A Mesozoic time scale. J. Geophys. Res., 99, 24051–24074.
    [Google Scholar]
  11. Gratier, J.P. & Guillier, B. (1993) Compatibility constraints on folded and faulted strata and calculation of total displacement using computational restoration (UNFOLD program). J. Struct. Geol., 15, 391–402.
    [Google Scholar]
  12. Gratier, J.P., Guillier, B., Delorme, A. & Odonne, F. (1991) Restoration and balanced cross section of a folded and faulted surface by computer program: principle and application. J. Struct. Geol., 13, 11–115.
    [Google Scholar]
  13. Guillier, B. (1991) Dépliage automatique de strates plissées et faillées: application à l'équilibrage des structures naturelles. Unpublished PhD Thesis, University of Grenoble, France.
  14. Guillocheau, F. (1995) Nature, rank and origin of Phanerozoic sedimentary cycles. C. R. Acad. Sci. Paris, 320, 1141–1157.
    [Google Scholar]
  15. Hallam, A. (1992) Phanerozoic Sea Level Changes. Columbia University Press, New York.
    [Google Scholar]
  16. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea‐levels since the Triassic. Science, 235, 1156–1166.
    [Google Scholar]
  17. Homewood, P., Guillocheau, F., Eschard, R. & Cross, T. (1992) Corrélation haute résolution et stratigraphie génétique: une démarche intégrée. Bull. Centres Rech. Explor. Prod. Elf, 16, 375–381.
    [Google Scholar]
  18. Hossack, J.R. (1979) The use of balanced cross section in the calculation of orogenic contraction: a review. J. Geol. Soc. London, 136, 705–711.
    [Google Scholar]
  19. Jardiné, S., Kieser, G. & Reyre, Y. (1974) Individualisation progressive du continent africain à travers les données palynologiques de l'ère secondaire. Bull. Soc. Géol. Strasbourg, 27, 68–85.
    [Google Scholar]
  20. Jervey, M.T. (1988) Quantitative geological modeling of siliclastic rock sequences and their seismic expressions. In: Sea‐level Changes: An Integrated Approach. (Ed. by C.K.Wilgus , B.S.Hastings , C.G.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ), Soc. Econ. Paleont. Min. Spec. Publ., 42, 47–69.
    [Google Scholar]
  21. Liro, L.M. & Coen, R. (1995) Salt deformation history and postsalt structural trends, offshore southern Gabon, West Africa. In: Salt Tectonics: A Global Perspective. (Ed. by M.P.A.Jackson , D.G.Roberts & S.Snelson ), Amer. Assoc. Petrol. Geol. Mem., 65, 323–331.
    [Google Scholar]
  22. Lundin, E.R. (1992) Thin‐skinned extensional tectonics on a salt detachment, northern Kwanza Basin, Angola. Marine Petrol. Geol., 9, 405–411.
    [Google Scholar]
  23. Mauduit, T. (1998) Déformation Gravitaire Synsédimentaire sur une Marge Passive. Modélisation Analogique et Application au Golf de Guinée. Mémoires de Géosciences Rennes, 83, Géosciences Rennes, France.
  24. Mauduit, T. & Brun, J.P. (1998) Growth fault/rollover systems. J. Geophys. Res., 103, 18119–18136.
    [Google Scholar]
  25. Morgan, R. (1978) Albian to Senonian palynology of Site 364, Angola Basin. Init. Rep. Deep Sea Drill. Proj., 40, 915–951.
    [Google Scholar]
  26. Nalpas, T. & Brun, J.P. (1993) Salt flow and diapirism related to extension at crustal scale. Tectonophysics, 228, 349–362.
    [Google Scholar]
  27. Posamentier, H.W., Jervey, M.T. & Vail, P.R. (1988) Eustatic controls on clastic deposition I – conceptual framework. In: Sea Level Changes: An Integrated Approach. (Ed. by C.K.Wilgus , B.S.Hastings , C.G.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ), Soc. Econ. Paleont. Miner. Spec. Publ., 42, 109–124.
    [Google Scholar]
  28. Robin, C. (1997) Mesure Stratigraphique de la Déformation: Application à L'évolution Jurassique du Bassin de Paris. Mémoires de Géosciences Rennes, 77, Géosciences Rennes, France.
  29. Robin, C., Guillocheau, F. & Gaulier, J.M. (1996) Mesure des signaux eustatiques et tectoniques au sein de l'enregistrement sédimentaire d'un bassin intracratonique. Application au Lias du Bassin de Paris. C. R. Acad. Sci. Paris, 322, 1079–1086.
    [Google Scholar]
  30. Robin, C., Guillocheau, F. & Gaulier, J.M. (1998) Discriminating between tectonic and eustatic controls on the stratigraphic record in the Paris Basin. Terra Nova, 10, 323–329.
    [Google Scholar]
  31. Robin, C., Guillocheau, F., Allemand, P., Bourquin, S., Dromart, G., Gaulier, J.M. & Prijeac, C. (2000) Echelles de temps et d'espace du contrôle tectonique d'un bassin flexural intracratonique: le Bassin de Paris. Bull. Soc. Géol. France, 171, 181–196.
    [Google Scholar]
  32. Rouby, D., Cobbold, P.R., Szatmari, P., Demercian, S., Coelho, D. & Rici, J.A. (1993a) Least‐squares palinspastic restoration of regions of normal faulting. Application to the Campos Basin (Brazil). Tectonophysics, 221, 439–452.
    [Google Scholar]
  33. Rouby, D., Cobbold, P.R., Szatmari, P., Demercian, S., Coelho, D. & Rici, J.A. (1993b) Restoration in plan view of faulted Upper Cretaceous and Oligocene horizons and its bearing on the history of salt tectonics in the Campos Basin (Brazil). Tectonophysics, 228, 435–445.
    [Google Scholar]
  34. Rouby, D., Raillard, S., Guillocheau, F., Bouroullec, R. & Nalpas, T. (2002) Kinematics of a growth fault/raft system from restoration in 3D (West African Margin). J. Struct. Geol., 24, 783–796.
    [Google Scholar]
  35. Rouby, D., Suppe, J. & Xiao, H. (2000) 3D restoration of complexly faulted and folded surfaces using multiple unfolding mechanisms. Amer. Assoc. Petrol. Geol., 84, 805–829.
    [Google Scholar]
  36. Samson, P. (1996) Equilibrage de structures géologiques 3D dans le cadre du projet GOCAD. Unpublished PhD Thesis, Institut National Polytechnique de Lorraine, Nancy, France.
  37. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the mid-Cretaceous subsidence of the Central North Sea Basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  38. Spathopoulos, F. (1996) An insight on salt tectonics in the Angola Basin, South Atlantic. In: Salt Tectonics. (Ed. by G.I.Alsop , D.J.Blundel & I.Davison ), London, Geol. Soc. London Spec. Publ., 100, 153–174.
    [Google Scholar]
  39. Van Wagoner, J.C., Mitchum, R.M., Campion, K.M. & Rahmanian, V.D. (1990) Siliciclastic Sequence Stratigraphy in Well Logs, Core and Outcrops: Concepts for High‐Resolution Correlation of Time and Facies. Methods Explor. Ser. 7. Amer. Assoc. Petrol. Geol.
  40. Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Loutit, T.S. & Hardenbol, J. (1988) An overview of the fundamentals of sequence stratigraphy and key definitions. In: Sea Level Changes: An Integrated Approach. (Ed. by C.K.Wilgus , B.S.Hastings , C.G.Kendall , H.W.Posamentier , C.A.Ross & J.C.VanWagoner ), Soc. Econ. Paleont. Miner. Spec. Publ., 42, 39–45.
    [Google Scholar]
  41. Vendeville, B. (1987) Champs de failles et tectonique en extension: modélisation experimentale: Mém. Doc. Cent. Armoricain. Etud. Struct. Socles., 15, Rennes.
  42. Vendeville, B. & Cobbold, P.R. (1987) Glissements gravitaires synsédimentaires et failles normales listriques: modèles expérimentaux. C. R. Acad. Sci. Paris, 305, 1313–1319.
    [Google Scholar]
  43. Vendeville, B. & Cobbold, P.R. (1988) How normal faulting and sedimentation interact to produce listric fault profiles and stratigraphic wedges. J. Struct. Geol., 10, 649–659.
    [Google Scholar]
  44. Vendeville, B.C. & Jackson, M.P.A. (1992a) The rise of diapirs during thin skinned extension. Marine Petrol. Geol., 9, 331–353.
    [Google Scholar]
  45. Vendeville, B.C. & Jackson, M.P.A. (1992b) The fall of diapirs during thin skinned extension. Marine Petrol. Geol., 9, 354–371.
    [Google Scholar]
  46. Vendeville, B., Cobbold, P.R., Davy, P., Brun, J.P. & Choukroune, P. (1987) Physical models of extensional tectonics at various scales. In: Continental extensional tectonics. (Ed. by M.P.Coward , J.F.Dewey & P.L.Hanckock ), Geol. Soc. London Spec. Publ., 28, 95–107.
    [Google Scholar]
  47. Vernet, R., Assoua‐Wande, C., Massamba, L. & Sorriaux, P. (1996) Paléogéographie du Crétacé (Albien‐Maastrichtien) du bassin côtier congolais. Mem. Bull. Centres Rech. Explo. Prod. Elf, 16, 39–55.
    [Google Scholar]
  48. Williams, G.D., Kane, S.J., Buddin, T.S. & Richards, A.J. (1997) Restoration and balance of complex folded and faulted rock volumes: flexural flattening, jigsaw fitting and decompaction in 3D. Tectonophysics, 273, 203–218.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2003.00200.x
Loading
/content/journals/10.1046/j.1365-2117.2003.00200.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error