1887
Volume 15, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Valparaiso Basin constitutes a unique and prominent deep‐water forearc basin underlying a 40‐km by 60‐km mid‐slope terrace at 2.5‐km water depth on the central Chile margin. Seismic‐reflection data, collected as part of the CONDOR investigation, image a 3–3.5‐km thick sediment succession that fills a smoothly sagged, margin‐parallel, elongated trough at the base of the upper slope. In response to underthrusting of the Juan Fernández Ridge on the Nazca plate, the basin fill is increasingly deformed in the seaward direction above seaward‐vergent outer forearc compressional highs. Syn‐depositional growth of a large margin‐parallel monoclinal high in conjunction with sagging of the inner trough of the basin created stratal geometries similar to those observed in forearc basins bordered by large accretionary prisms. Margin‐parallel compressional ridges diverted turbidity currents along the basin axis and exerted a direct control on sediment depositional processes. As structural depressions became buried, transverse input from point sources on the adjacent upper slope formed complex fan systems with sediment waves characterising the overbank environment, common on many Pleistocene turbidite systems. Mass failure as a result of local topographic inversion formed a prominent mass‐flow deposit, and ultimately resulted in canyon formation and hence a new focused point source feeding the basin.

The Valparaiso Basin is presently filled to the spill point of the outer forearc highs, causing headward erosion of incipient canyons into the basin fill and allowing bypass of sediment to the Chile Trench. Age estimates that are constrained by subduction‐related syn‐depositional deformation of the upper 700–800 m of the basin fill suggest that glacio‐eustatic sea‐level lowstands, in conjunction with accelerated denudation rates, within the past 350 ka may have contributed to the increase in simultaneously active point sources along the upper slope as well as an increased complexity of proximal depositional facies.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2003.00205.x
2003-05-28
2024-03-29
Loading full text...

Full text loading...

References

  1. Bangs, N.L. & Cande, S.C. (1997) The episodic development of a convergent margin inferred from structures and processes along the Southern Chile margin. Tectonics, 16, 489–503.
    [Google Scholar]
  2. Beaudry, D. & Moore, G. (1985) Seismic stratigraphy and Cenozoic evolution of West Sumatra Forearc Basin. AAPG Bull., 69, 742–759.
    [Google Scholar]
  3. Bowen, A.J., Normark, W.R. & Piper, D.J.W. (1984) Modelling of turbidity currents on Navy submarine fan, California Continental Borderland. Sedimentology, 31, 169–185.
    [Google Scholar]
  4. Burgess, P.M. & Hovius, B. (1998) Rates of delta progradation during highstands: consequences for timing of deposition in deep-marine systems. J. Geol. Soc. London, 155, 217–222.
    [Google Scholar]
  5. Cahill, T. & Isacks, B.L. (1992) Seismicity and shape of the subducted Nazca plate. J. Geophys. Res., 97, 17503–17529.
    [Google Scholar]
  6. Carter, L., Carter, R.M., Nelson, C.S., Fulthorpe, C.S. & Neil, H.L. (1990) Evolution of Pliocene to Recent abyssal sediment waves on Bounty Channel levees, New Zealand. Mar. Geol., 95, 97–109.
    [Google Scholar]
  7. Chappel, J. & Shackleton, N.J. (1986) Oxygen isotopes and sea level. Nature, 324, 137–149.
    [Google Scholar]
  8. Clift, P.D. & MacLeod, C.J. (1999) Slow rates of subduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology, 27, 411–414.
    [Google Scholar]
  9. Clift, P.D., MacLeod, C.J., Tappin, D.R., Wright, D.J. & Bloomer, S.H. (1998) Tectonic controls on sedimentation and diagenesis in the Tonga Trench and forearc, southwest Pacific. Geol. Soc. Am. Bull., 110, 483–496.
    [Google Scholar]
  10. Corvalán, J. (1989) Geologic–tectonic framework of the Andean region. In: Geology of the Andes and its Relations to Hydrocarbon and Mineral Resources, Earth Science Series, Vol. 11 (Ed. by G.E.Ericksen , M.T.Cañas Pinochet & J.A.Reinemund ), pp. 1–111. Circum‐Pacific Council for Energy and Mineral Resources, Houston, TX.
    [Google Scholar]
  11. Coulbourn, W.T. (1981) Tectonics of the Nazca plate and the continental margin of western South America, 18°S to 23°S. In: Nazca Plate: Crustal Formation and Andean Convergence (Ed. by L.D. Kulm, J. Dymond, E.J. Dasch & C.M. Hussong) Geol. Soc. Am. Mem. 154, 587–618.
    [Google Scholar]
  12. DeMets, C., Gordon, R.G., Argus, D.F. & Stein, S. (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21, 2191–2194.
    [Google Scholar]
  13. Dickinson, W.R. & Seely, D.R. (1979) Structure and stratigraphy of forearc regions. Am. Assoc. Petrol. Geol. Bull., 63, 2–31.
    [Google Scholar]
  14. Dobson, M.R., Scholl, D.W. & Stevenson, A.J. (1991) Interplay between arc tectonics and sea‐level changes as revealed by sedimentation patterns in the Aleutians. In: Sedimentation, Tectonics and Eustacy: Sea‐Level Changes at Active Margins, Special Publication No. 12, International Association of Sedimentologists (Ed. by D.I.M.Macdonald ), pp. 151–163. Blackwell, Oxford.
    [Google Scholar]
  15. Dobson, M.R., Karl, H.A. & Vallier, T.L. (1996) Sedimentation along the fore‐arc region of the Aleutian Island Arc, Alaska. In: Geology of the United States’ Seafloor, The View from GLORIA (Ed. by J.V.Gardner , M.E.Field & D.C.Twichell ), pp. 279–304. Cambridge University Press, Cambridge.
    [Google Scholar]
  16. Dominguez, S. (1998) Déformation des marges actives liées à la subduction de reliefs océaniques: analyse tectonique de données de géophysique marine et de modèles analogiques. Université Montpellier II.
  17. Droz, L. & Bellaiche, G. (1985) Rhone deep‐sea fan: morphostructure and growth pattern. Am. Ass. Petrol. Geol. Bull., 69, 460–479.
    [Google Scholar]
  18. Droz, L., Rigaut, F., Coshonat, P. & Tofani, R. (1996) Morphology and recent evolution of the Zaire turbidite system (Gulf of Guinea). GSA Bull., 1083, 253–269.
    [Google Scholar]
  19. Flueh, E.R., Vidal, N., Ranero, C.R., Hojka, A., Von Huene, R., Bialas, J., Hinz, K., Cordoba, D., Danobeitia, J.J. & Zelt, C. (1998) Seismic investigation of the continental margin off‐ and onshore Valparaiso, Chile. Tectonophysics, 288, 251–263.
    [Google Scholar]
  20. González, E. (1989) Hydrocarbon resources in the coastal zone of Chile. In: Geology of the Andes and its Relations to Hydrocarbon and Mineral Resources, Earth Science Series, Vol. 11 (Ed. by G.E.Ericksen , M.T.Cañas Pinochet & J.A.Reinemund ), pp. 383–404. Circum‐Pacific Council for Energy and Mineral Resources, Houston, TX.
    [Google Scholar]
  21. Hagen, R., Vergara, H. & Naar, D. (1996) Morphology of San Antonio submarine canyon on the central Chile forearc. Mar. Geol., 129, 197–205.
    [Google Scholar]
  22. Heusser, C.J. (1989) Southern westerlies during the Last Glacial Maximum. Quat. Res., 31, 423–425.
    [Google Scholar]
  23. Jordan, T.E., Isacks, B., Allmendinger, R., Brewer, J., Ramos, V.A. & Ando, C. (1983) Andean tectonics related to the geometry of subducted plates. Geol. Soc. Am. Bull., 94, 341–361.
    [Google Scholar]
  24. Kay, S.M. & Abbruzzi, J.M. (1996) Magmatic evidence for Neogene lithospheric evolution of the central Andean ‘flat‐slab’ between 30°S and 32°S. Tectonophysics, 259, 15–28.
    [Google Scholar]
  25. Kenyon, N.H., Millington, J., Droz, L. & Ivanov, M.K. (1995) Scour holes in a channel‐lobe transition zone on the Rhone Cone. In: Atlas of Deep Water Environments: Architectural Style in Turbidite Systems (Ed. by K.T.Pickering , R.N.Hiscott , N.H.Kenyon , FRicci Lucchi & R.D.A.Smith ), pp. 212–215. Chapman & Hall, London.
    [Google Scholar]
  26. Klaus, A. & Taylor, B. (1991) Submarine canyon development in the Izu‐Bonin forearc: a SeaMARC II and seismic survey of Aoga Shima Canyon. Mar. Geophys. Res, 13, 131–152.
    [Google Scholar]
  27. Lamy, F.D., Hebbeln, D. & Wefer, G. (1998) Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition. Geol. Rundsch., 87, 477–494.
    [Google Scholar]
  28. Lamy, F., Hebbeln, D. & Wefer, G. (1999) High‐resolution marine record of climatic change in mid‐latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quat. Res., 51, 83–93.
    [Google Scholar]
  29. Laursen, J. (2001) Acquisition and Processing of the CONDOR seismic‐reflection data. In: Late Cenozoic evolution of the central Chile forearc margin (32°S–34°S): tectonic and depositional responses to subduction of the Juan Fernández Ridge. Unpublished PhD Thesis, Department of Earth Science, University of Aarhus, Denmark, pp. 23–28.
  30. Laursen, J., Scholl, D.W. & Von Huene, R. (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics, 21 (5)M, 1038, report 2, 1–27.
    [Google Scholar]
  31. Laursen, J. & Normark, W.R. (2002) Late Quaternary evolution of the San Antonio Submarine Canyon in the Central Chile forearc (∼33°S). Mar. Geol., 188, 365–390.
    [Google Scholar]
  32. Lee, H.J. (1989) Undersea landslides: Extent and significance in the Pacific Ocean. In: Landslides: Extent and Economic Significance, Proceedings of the 28th International Geology Congress (Ed. by E.E.Brabb & B.L.Harrod ), pp. 367–379. Balkema, Rotterdam.
    [Google Scholar]
  33. Lee, H.J., Syvitski, J.P.M., Parker, G., Orange, D., Locat, J., Hutton, E.W.H. & Imran, J. (2002) Distinguishing sediment waves from slope failure deposits: field examples, including the ‘Humboldt slide’, and modelling results. Mar. Geol., 192, 79–104.
    [Google Scholar]
  34. Lewis, S. & Hayes, D.E. (1984) A geophysical study of the Manila Trench, Luzon, Phillippines. 2. Fore arc basin structural and stratigraphic evolution. J. Geophys. Res., 89, 9196–9214.
    [Google Scholar]
  35. Lewis, K.B., Collot, J.‐Y. & Lallemand, S.E. (1998) The dammed Hikurangi Trough: a channel-fed trench blocked by subducting seamounts and their wake avalanches (New Zealand–France GeodyNZ Project). Basin Res., 10, 441–468.
    [Google Scholar]
  36. Mapa Geologico de Chile
    Mapa Geologico de Chile (1982) Servicio Nacional de Geologia y Mineria, Chile.
  37. Martinson, D.G., Osusuas, N.G., Hays, J.D., Imbrie, J., Moore, T.D.Jr & Shackleton, N.J. (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chrono-stratigraphy. Quat. Res., 27, 1–29.
    [Google Scholar]
  38. Migeon, S., Savoye, B. & Faugeres, J.‐C. (2000) Quaternary development of migrating sediment waves in the Var deep‐sea fan: distribution, growth patterns, and implication for levee evolution. Sed. Geol., 133, 265–293.
    [Google Scholar]
  39. Miller, A. (1976) The climate of Chile. In: World Survey of Climatology, Vol. 12 (Ed. by W.Schwerdtfeger ), pp. 113–145. Elsevier, Amsterdam.
    [Google Scholar]
  40. Mitchum, R.M., Jr (1985) Seismic stratigraphic expression of submarine fans. In: Seismic Stratigraphy II: An Integrated Approach to Hydrocarbon Exploration (Ed. by O.R.Berg & D.G.Woolverton ), Am. Assoc. Petrol. Geol. Mem. 39, 117–136.
    [Google Scholar]
  41. Mountney, N.P. & Westbrook, G.K. (1997) Quantitative analysis of Miocene to Recent forearc basin evolution along the Columbian convergent margin. Basin Res., 9, 177–196.
    [Google Scholar]
  42. Mpodozis, C. & Ramos, V. (1989) The Andes of Chile and Argentina. In: Geology of the Andes and its Relations to Hydrocarbon and Mineral Resources, Earth Science Series, Vol. 11 (Ed. by G.E.Ericksen , M.T.Cañas Pinochet & J.A.Reinemund ), pp. 59–90. Circum‐Pacific Council for Energy and Mineral Resources, Houston, TX.
    [Google Scholar]
  43. Mulder, T. & Syvitski, J.P.M. (1995) Turbidity currents generated at mouths of rivers during exceptional discharges to the world oceans. J. Geol., 103, 285–299.
    [Google Scholar]
  44. Mutti, E. & Normark, W.R. (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Marine Clastic Sedimentology: Concepts and Case Studies (Ed. by J.K.Legget & G.G.Zuffa ), pp. 1–38. Graham and Trotman, London.
    [Google Scholar]
  45. Nakajima, T. & Satoh, M. (2001) The formation of large mudwaves by turbidity currents on the levees of the Toyama deep‐sea channel, Japan Sea. Sedimentology, 48, 435–463.
    [Google Scholar]
  46. Nardin, T.R., Hein, F.J., Gorsline, D.S. & Edwards, B.D. (1979) A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base‐of‐slope systems versus canyon‐fan‐basin floor systems. In: Geology of Continental Slopes 27 (Ed. by L.J.Doyle & O.H.Pilkey ), SEPM, Spec. Publ. 27, 61–73.
    [Google Scholar]
  47. Normark, W.R. & Piper, D.J.W. (1991) Initiation processes and flow evolution of turbidity currents: implications for the depositional record. In: From Shoreline to Abyss (Ed. by R.H. Osborne), SEPM Spec. Publ., 46, 207–230.
  48. Normark, W.R., Piper, D.J.W. & Hess, G.R. (1979) Distributary channels, sand lobes, and mesotopography of navy submarine fan, California Borderland, with applications to ancient fan sediments. Sedimentology, 26, 749–774.
    [Google Scholar]
  49. Normark, W.R., Hess, G.R., Stow, D.A.V. & Bowen, A.J. (1980) Sediment waves on the Monterey Fan complex: a preliminary physical interpretation. Mar. Geol., 37, 1–18.
    [Google Scholar]
  50. Normark, W.R., Posamentier, H. & Mutti, E. (1993) Turbidite systems: state of the art and future directions. Rev. Geophys., 31, 91–116.
    [Google Scholar]
  51. Peakall, J., McCaffrey, B. & Kneller, B. (2000) A process model for the evolution, morphology, and architecture of sinuous submarine channels. J. Sed. Res., 70, 434–448.
    [Google Scholar]
  52. Pilger, R.H. (1981) Plate reconstructions, aseismic ridges, and low‐angle subduction beneath the Andes. Geol. Soc. Am. Bull., 92, 448–456.
    [Google Scholar]
  53. Piper, D.J.W. & Normark, W.R. (1983) Turbidite‐deposits, patterns and flow characteristics, Navy Submarine Fan, California borderland. Sedimentology, 30, 681–694.
    [Google Scholar]
  54. Piper, D.J.W. & Normark, W.R. (2001) Sandy fans – from Amazon to Hueneme and beyond. AAPG Bull., 85, 1407–1438.
    [Google Scholar]
  55. Piper, D.J.W. & Savoye, B. (1993) Processes of late Quaternary turbidity current flow and deposition on the Var deep‐sea fan, north‐west Mediterranean Sea. Sedimentology, 40, 557–582.
    [Google Scholar]
  56. Piper, D.J.W., Pirmez, C., Manley, P.L., Long, D., Flood, R.D., Normark, W.R. & Showers, W. (1997) Mass‐transport deposits of the Amazon Fan. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 155 (Ed. by R.D.Flood , D.J.W.Piper , A.Klaus & L.C.Peterson ), pp. 109–146. Texas A&M University, Texas.
    [Google Scholar]
  57. Piper, D.J.W., Hiscott, R.N. & Normark, W.R. (1999) Outcrop‐scale acoustic facies analysis and latest Quaternary development of Hueneme and Dume submarine fans, offshore California. Sedimentology, 46, 1132–1141.
    [Google Scholar]
  58. Posamentier, H.W. & Vail, P.R. (1988) Eustatic control on clastic deposition, II‐sequence and systems tract models. In: Sea‐Level Changes – An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ), SEPM Spec. Publ. 42, 125–154.
    [Google Scholar]
  59. Posamentier, H.W., Erskine, R.D. & Mitchum, R.M.Jr (1991) Models for submarine‐fan deposition within a sequence‐stratigraphic framework. In: Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (pp. 127–136 Ed. by P.Weimer & M.H.Link , Springer‐Verlag, New York.
    [Google Scholar]
  60. Prather, B.E., Booth, J.R., Steffens, G.S. & Craig, P.A. (1998) Classification, lithologic calibration and stratigraphic succession of seismic facies of intra‐slope basins, deep‐water Gulf of Mexico. Am. Assoc. Petrol. Geol., Bull.82, 701–728.
    [Google Scholar]
  61. Rabassa, J. & Clapperton, C.M. (1990) Quaternary glaciations of the southern Andes. Quat. Sci. Rev., 9, 153–174.
    [Google Scholar]
  62. Ricci Lucchi, F., Collella, A., Gabbianelli, G., Rossi, S. & Normark, W.R. (1984) The Crati submarine fan, Ionian Sea. Geo-Mar. Lett., 3, 71–77.
    [Google Scholar]
  63. Sangree, J.B. & Widmier, J.M. (1979) Interpretation of depositional facies from seismic data. Geophysics, 44, 131–160.
    [Google Scholar]
  64. Scholl, D.W., Von Huene, R. & Ryan, H.F. (2002) Basal subduction erosion and the formation of the Aleutian Terrace and underlying forearc basin. Program and Abstracts, 3rd Biennial Workshop on Subduction Processes Emphasizing the Kurile–Kamchatka–Aleutian Arc, Geophysical Institute, University of Alaska, Fairbanks, 9–15 June 2002, pp. 61–62.
  65. Sinclair, H.D. (2000) Delta‐fed turbidites infilling topographically complex basins: a new depositional model for the Annot Sandstones, SE France. J. Sed. Res., 70, 504–519.
    [Google Scholar]
  66. Sinclair, H.D. & Tomasso, M. (2002) Depositional evolution of confined turbidite basins. J. Sed. Res., 72, 451–456.
    [Google Scholar]
  67. SmithW.H.F. & Sandwell, D.T. (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science, 27, 1956–1962.
    [Google Scholar]
  68. Trincardi, F. & Normark, W.R. (1989) Pleistocene Suvero slide, Paola Basin, southern Italy. Mar. Petrol. Geol., 6, 324–335.
    [Google Scholar]
  69. Vannuchi, P., Meschede, M., Scholl, D.W. & McDougall‐Reid, K. (2001) Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics, 20, 649–668.
    [Google Scholar]
  70. Von Huene, R. & Lallemand, S. (1990) Tectonic erosion along the Japan and Peru convergent margins. Geol. Soc. Am. Bull., 102, 704–720.
    [Google Scholar]
  71. Von Huene, R. & Scholl, D.W. (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys., 29, 279–316.
    [Google Scholar]
  72. Von Huene, R. & Suess, E.Leg 112 Shipboard Scientists (1988) Ocean Drilling Program Leg 112, Peru continental margin: Part 1, Tectonic history. Geology, 16, 934–938.
    [Google Scholar]
  73. Von Huene, R., Corvalân, J., Flueh, E.R., Hinz, K., Korstgârd, J.A., Ranero, C.R. & Weinrebe, Wthe CONDOR Scientists (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics, 16, 474–488.
    [Google Scholar]
  74. Wessel, P. & Smith, W.H.F. (1991) Free softward helps map and display data. EOS, 72, 441.
    [Google Scholar]
  75. Williams, T.A. (1997) Basin‐fill architecture and forearc tectonics, Cretaceaus Great Valley Group, Sacramento basin, northern California. PhD Thesis, Stanford University.
  76. Wynn, R.B., Masson, D.G., Stow, D.A.V. & Weaver, P.P.E. (2000a) Turbidity current sediment waves on the submarine slopes of the western Canary Islands. Mar. Geol., 163, 185–198.
    [Google Scholar]
  77. Wynn, R.B., Weaver, P.P.E., Ercilla, G., Stow, D.A.V. & Masson, D.G. (2000b) Sedimentary processes in the Selvage sediment‐wave field, NE Atlantic: new insights into the formation of sediment waves by turbidity currents. Sedimentology, 47, 1181–1197.
    [Google Scholar]
  78. Wynn, R.B. & Stow, D.A.V (2002) Classification and characterisation of deep‐water sediment waves. Mar. Geol., 192, 7–22.
    [Google Scholar]
  79. Yañez, G.A., Ranero, C.R., Von Huene, R. & Díaz, J. (2001) Magnetic anomaly interpretation across the southern central Andes (32°–34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J. Geophys. Res., 106, 6325–6345.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2003.00205.x
Loading
/content/journals/10.1046/j.1365-2117.2003.00205.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error