1887
Volume 15, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Most authors suggest that the main contraction phases in the southern Central Andes started in the Late Miocene. Along the flat‐slab segment, deformation has progressively involved basement and a broken foreland has developed. Recent work suggests that construction of the Andes by late Neogene shortening may have been controlled by lithospheric thinning and crustal structure generated during mid‐Tertiary times in the Southern and Central Andes. Exposures at the eastern border of the Famatina Ranges in western Argentina in the flat‐slab segment document basement involved extension of approximately this age. The Del Abra Formation, the lower unit of a major Andean synorogenic cycle (Angulos Group), reveals a distinct and previously unrecognized early Middle Miocene tectonic event. This is suggested by a 505‐m‐thick thinning‐ and fining‐upward megasequence. Dominantly conglomeratic facies record a continuous progression from fault‐scarp‐related high‐gradient colluvium to relatively distal terminal‐fan facies. The fining–thinning upward megasequence characterizes progressive scarp backstepping and decreasing relief after active extension. Interpretation of the stratigraphic fill and the associated structure (high‐angle hinterland‐dipping fault) favours tectonic inversion of an originally normal fault. This allows reappraisal and new understanding of the early‐stage architecture of the Central Andean foreland. Early Middle Miocene extension may have had an important bearing on the later evolution of the broken foreland.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2003.00206.x
2003-08-21
2020-05-31
Loading full text...

Full text loading...

References

  1. Aceñolaza, F.G., Miller, H. & Toselli, A.J. (1996) Geología del Sistema del Famatina. Müncher Geologische Hefte (Reihe A Allgemeine Geologie, A 19), Munich.
  2. Allmendinger, R.W. (2001) FaultKinWin version 1.1 Manual. Cornell University, Ithaca.
    [Google Scholar]
  3. Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodizis, C. & Isacks, B.L. (1990) Foreland shortening and crustal balancing in the Andes at 30° S latitude. Tectonics, 9, 789–809.
    [Google Scholar]
  4. Astini, R.A. (1996) Las fases diastróficas del Paleozoico medio en la Precordillera del oeste argentino – evidencias estratigraficas. 13th Congreso Geológico Argentino y 3rd Congreso de Exploraciones e Hidrocarburos,, 5, 509–526.
    [Google Scholar]
  5. Astini, R.A. (1998) El Ordovícico de la región central del Famatina (provincia de La Rioja, Argentina): aspectos estratigráficos, geológicos y geotectónicos. Rev. Asoc. Geol. Arg., 53, 445–460.
    [Google Scholar]
  6. Ballance, P.F. (1984) Sheet flow dominated gravel fans of the non marine Middle Cenozoic Simmler Formation, Central California. Sediment., 38, 337–359.
    [Google Scholar]
  7. Barazangi, M. & Isacks, B.I. (1976) Spatial distribution of earthquakes and subduction of the Nazca Plate beneath South America. Geology, 4, 686–692.
    [Google Scholar]
  8. Barbeau, D.L. (2003) A flexural model for the Paradox Basin: implications for the tectonics of the ancestral Rocky Mountains. Basin Res., 15, 97–116.
    [Google Scholar]
  9. Beck, R.A., Vondra, C.F., Filkins, J. & Olander, J. (1988) Syntectonic sedimentation and Laramide basement thrusting: timing of deformation. In: Interaction of the Cordilleran Thrust Belt and Rocky Mountain Foreland (Ed. by C.J.Schmidt & W.J.Perry ), Geol. Soc. Am. Mem., 171, 465–488.
    [Google Scholar]
  10. Blair, T.C. & Bilodeau, W.L. (1988) Development of tectonic cyclothems in rift, pull‐apart, and foreland basins: sedimentary response to episodic tectonism. Geology, 16, 517–520.
    [Google Scholar]
  11. Blair, T.C. & McPherson, J.G. (1994) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary process, and facies assemblages. J. Sediment. Res., A64, 450–489.
    [Google Scholar]
  12. Blikra, L.H. & Nemec, W. (1998) Postglacial colluvium in western Norway: depositional processes, facies, and paleoclimatic record. Sedimentology, 45, 900–959.
    [Google Scholar]
  13. Bodenbender, G. (1922) El Nevado de Famatina. An. Min. Agric., Sec. Geol., Min. y Min., Buenos Aires, 16.
    [Google Scholar]
  14. Bodenbender, G. (1924) El Calchaqueño y los Estratos de la Puna de Penck. Bol. Acad. Nac. Cs., 27, 405–468.
    [Google Scholar]
  15. Bossi, G.E., Georgieff, S.M., Gavriloff, I.J.C., Ibañez, L.M. & Muruaga, C.M. (2001) Cenozoic evolution of the intramontane Santa María basin, Pampean Ranges, NW Argentina. J. South Am. Earth Sci., 15, 725–734.
    [Google Scholar]
  16. Brayshaw, A.C. (1984) Characteristics and origin of cluster bedforms in coarse‐grained alluvial channels. In: Sedimentology of Gravels and Conglomerates (Ed. by E.H.Koster & R.J.Steel ), Can. Soc. Petrol. Geol. Mem. , 10, 77–86.
    [Google Scholar]
  17. Bridge, J.S. (1993) The interaction between channel geometry, water flow, sediment transportation and deposition in braided rivers. In: Braided Rivers (Ed. by J.L.Best & C.S.Bristow ), Geol. Soc. Spec. Publ., 75, 13–71.
    [Google Scholar]
  18. Burbank, D.W., Beck, R.A., Raynolds, R.G.H., Hobbs, R. & Tahirkheli, R.A.K. (1988) Thrusting and gravel progradation in foreland basins: a test of post‐thrusting gravel dispersal. Geology, 16, 1143–1146.
    [Google Scholar]
  19. Cahill, T. & Isacks, B. (1992) Seismicity and the shape of the subducted Nazca plate. J. Geophys. Res., 97, 17503–17529.
    [Google Scholar]
  20. Charrier, R., Baeza, O., Elgueta, S., Flynn, J.J., Gans, P., Kay, S.M., Muñoz, N., Wyss, A.R. & Zurita, E. (2002) Evidence for Cenozoic extensional basin development and tectonic inversion of the flat‐slab segment, southern Central Andes, Chile (33°–36° S L). J. South Am. Earth Sci., 15, 117–139.
    [Google Scholar]
  21. Colombo, F. (1992) Abanicos Aluviales. In: Sedimentología I (Ed. by A.Arche ), pp. 143–218. Consejo Superior de Investigaciones Científicas, Madrid.
    [Google Scholar]
  22. Cooper, M.‐A. & William, G.D. (1989) Inversion tectonics. Geol. Soc. of London, Spec. Publ., 44, 375pp.
  23. Coughlin, T.J., O'Sullivan, P.B., Kohn, B.P. & Holcombe, R.J. (1998) Apatite fission‐track thermochronology of the Sierras Pampeanas, central W Argentina: implications for the mechanism of plateau uplift in the Andes. Geology, 26, 999–1002.
    [Google Scholar]
  24. Crampton, S.L. & Allen, P.A. (1995) Recognition of forebulge unconformities associated with early stages foreland basin development: example from the North Alpine foreland basin. Am. Assoc. Petrol. Geol. Bull., 79, 1495–1514.
    [Google Scholar]
  25. Dávila, F.M. (2002) Composición de los conglomerados sinorogénicos del Terciario de la Sierra de Famatina, y su relación con la fragmentación del antepaís andino central. 9th Reunión Argentina de Sedimentología, Córdoba, 73pp..
    [Google Scholar]
  26. Dávila, F.M. & Astini, R.A. (2002) Geología de la Formación del Crestón, sierra de Famatina, Argentina: Sedimentación paleógena en el antepaís andino? Rev. Asoc. Geol. Arg., 57, 463–482.
    [Google Scholar]
  27. Dávila, F.M. & Astini, R.A. (2003a) Discordancias progresivas en los depósitos pre‐neógenos del Famatina (Formación del Crestón), La Rioja, Argentina y su implicancia en la evolución del antepaís andino. Rev. Asoc. Geol. Arg., 58 (1), in press.
    [Google Scholar]
  28. Dávila, F.M. & Astini, R.A. (2003b) Early Miocene synorogenic strata in Famatina (Central Andean broken foreland): wedge‐top depozone, proximal foredeep sedimentation or a different setting? 3rd Latin American Congress of Sedimentology, 8–11 June 2003, in press.
    [Google Scholar]
  29. Dávila, F.M., Astini, R.A. & Schmidt, C. (2003) Unravelling 470 m.y. of shortening in the Central Andes and documentation of Type 0 superposed folding, Famatina Ranges, Western Argentina. Geology, 31, 275–278.
    [Google Scholar]
  30. De Alba, E. (1979) El Sistema de Famatina. Segundo Simposio de Geología Regional Argentina, Academia Nacional de Ciencias, Córdoba, 1, 349–395.
    [Google Scholar]
  31. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  32. DeCelles, P.G., Langford, R.P. & Schwartz, R.K. (1983) Two new method of paleocurrent determination from trough cross stratification. J. Sediment. Petrol., 53, 629–642.
    [Google Scholar]
  33. DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Pivnik, D.A., Pequera, N. & Srivastava, P. (1991) Controls on synorogenic alluvial‐fan architecture, Beartooth Conglomerate (Paleocene), Wyoming and Montana. Sedimentology, 38, 567–590.
    [Google Scholar]
  34. Ettensohn, F.R., Hohman, J.C., Kulp, M.A. & Rast, N. (2002) Evidence and implications of possible far‐field responses to Taconian Orogeny: Middle–Late Ordovician Lexington platform and Sebree trough, East‐Central United States. Southeastern Geol., 41, 1–36.
    [Google Scholar]
  35. Evans, M.J. & Elliot, T. (1999) Evolution of a thrust‐sheet‐top basin: The Tertiary Barrême basin, Alpes‐de‐Haute‐Provence, France. Geol. Soc. Am. Bull., 111, 1617–1643.
    [Google Scholar]
  36. Fisher, N.D., Jordan, T.E. & Brown, L. (2002) The structural and stratigraphic evolution of the La rioja Basin, Argentina. J. South Am. Earth Sci., 15, 141–156.
    [Google Scholar]
  37. Flint, S., Turner, P., Jolley, E.J. & Hartley, A.J. (1993) Extensional tectonics in convergent margin basins: an example from the Salar de Atacama, Chilean Andes. Geol. Soc. Am. Bull., 105, 603–617.
    [Google Scholar]
  38. Fraser, G.S. & DeCelles, P.G. (1992) Geomorphic controls on sedimentary accumulation at margins of foreland basins. Basin Res., 4, 233–252.
    [Google Scholar]
  39. Friedmann, S.J. (1998) Rock avalanche elements of the Shadow Valley basin, eastern Mojave Desert, California: processes and problems. J. Sediment. Res., 67, 792–804.
    [Google Scholar]
  40. Frostick, L.E. & Steel, R.J. (1993) Tectonic signatures in sedimentary basin fills: an overview. In: Tectonic Controls and Signatures in Sedimentary Successions (Ed. by L.E.Frostick & R.J.Steel ), Spec. Publ. Int. Assoc. Sedimentol., 20, 1–9.
    [Google Scholar]
  41. Gloppen, T.G. & Steel, R.J.1981The deposits, internal structure and geometry in six alluvial fan–fan delta bodies (Devonian, Norway) – a study in the significance of bedding sequences in conglomerates. In: Recent and Acient Non‐marine Depositional Enviroments: Models for Exploration (Ed. by F.G.Ethrige & R.M.Flores ), Soc. Econ. Paleontol. Mineral. Spec. Publ., 31, 49–69.
    [Google Scholar]
  42. Godoy, E., Yañez, G. & Vera, E. (1999) Inversion of an Oligocene volcano‐tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysiscs, 306, 217–236.
    [Google Scholar]
  43. Gordillo, C.E. & Lencinas, A.N. (1979) Sierras Pampeanas de Córdoba y San Luis. Segundo Simposio de Geología Regional Argentina, Academia Nacional de Ciencias, Córdoba, 1, 577–650.
    [Google Scholar]
  44. Grier, M.E., Salfity, J.A. & Allmendinger, R.W. (1991) Andean reactivation of the Cretaceous Salta rift, northwestern Argentina. J. South Am. Earth Sci., 4, 351–372.
    [Google Scholar]
  45. Hartley, A.J. (1993) Sedimentological response of an alluvial system to source area tectonism: the Seilao Member of the Late Cretaceous to Eocene Purilactis Formation of northen Chile. In: Alluvial Sedimentation (Ed. by M.Marzo & C.Puígdefá‐bregas ), Int. Assoc. Sedimentol. Spec. Publ., 17, 489–500.
    [Google Scholar]
  46. Heward, A.P. (1978) Alluvial fan sequence and megasequence models: with examples from Westphalian D‐Stephanian B coalfields, Northern Spain. In: Fluvial Sedimentology (Ed. by A.D.Miall ), Can. Soc. Petrol. Geol. Mem., 5, 669–702.
    [Google Scholar]
  47. Horton, B.K. & DeCelles, P.G. (1997) The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895–898.
    [Google Scholar]
  48. Hubert, J.F. & Hyde, M.G. (1982) Sheet‐flow deposits of graded beds and mudstones on an alluvial sandflat–playa system: upper Triassic Blomidon red beds, St May Bay, Nova Scotia. Sedimentology, 29, 457–474.
    [Google Scholar]
  49. Ingram, R.L. (1954) Terminology for the thickness of stratification and parting units in sedimentary rocks. Geol. Soc. Am. Bull., 65, 937–938.
    [Google Scholar]
  50. Jacobi, R.D. (1981) Peripheral bulge ‐a casual mechanism for the lower/middle Ordovician unconformity along the western margin of northern Appalachians. Earth Planet. Sci. Lett., 56, 245–251.
    [Google Scholar]
  51. Jolley, E.J., Turner, P., Williams, G.D., Hartley, A.J. & Flint, S. (1990) Sedimentological response of an alluvial fan system to Neogene thrust tectonics, Atacama Desert, N Chile. J. Geol. Soc. London, 147, 769–784.
    [Google Scholar]
  52. Jordan, T.E. (1995) Retroarc foreland basins. In Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 331–362. Blackwell Science, Cambridge.
    [Google Scholar]
  53. Jordan, T.A. & Allmendinger, R.W. (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am. J. Sci., 286, 737–764.
    [Google Scholar]
  54. Jordan, T.E. & Alonso, R.N. (1987) Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20°–28° South latitude. Am. Assoc. Petrol. Geol. Bull., 71, 49–64.
    [Google Scholar]
  55. Jordan, T.E., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A. & Ando, J.A. (1983) Andean tectonics related to geometry of subduted Nazca plate. Geol. Soc. Am. Bull., 94, 341–361.
    [Google Scholar]
  56. Jordan, T.E., Allmendinger, R.W., Damanti, J.F. & Drake, R.E. (1993) Chronology of motion in a complete thrust belt: the Precordillera, 30°–31°, Andes Mountains. J. Geol., 101, 135–156.
    [Google Scholar]
  57. Jordan, T.E., Reynolds, J.H. & Erikson, J.P. (1997) Variability in the age of initial shortening and uplift in the central Andes, 16°–33°30′ S. In: Tectonic Uplift and Climate Change (Ed. by W.F.Ruddiman ), pp. 41–61. Plenum Press, New York.
    [Google Scholar]
  58. Jordan, T.E., Schlunegger, F. & Cardozo, N. (2001a) Unsteady and spatially variable evolution of the Neogene Andean Bermejo Foreland Basin, Argentina. J. South Am. Earth Sci., 14, 775–798.
    [Google Scholar]
  59. Jordan, T.E., Burns, W.M., Veiga, R., Pángaro, F., Copeland, P., Kelley, S. & Mpodozis, C. (2001b) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid‐Cenozoic trigger for the Andes. Tectonics, 20, 308–324.
    [Google Scholar]
  60. Kleinert, K. & Strecker, M.R. (2001) Climate change in response to orographic barrier uplift: Paleosol and stable isotope evidence from the late Neogene Santa María Basin, northwestern Argentina. Geol. Soc. Am. Bull., 113, 728–742.
    [Google Scholar]
  61. Leeder, M.R. (1995) Continental rifts and proto‐oceanic troughs. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersol ), pp. 119–148. Blackwell Science, Cambridge.
    [Google Scholar]
  62. Leeder, M.R. & Gawthorpe, R.L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. In: Continental Extensional Tectonics (Ed. by M.P.Coward , J.F.Dewey & P.L.Hancock ), Geol. Soc. Spec. Publ., 28, 139–152.
    [Google Scholar]
  63. Marrett, R.A. & Allmendinger, R.W. (1990) Kinematic analysis of fault‐slip data. J. Struct. Geol., 12, 973–986.
    [Google Scholar]
  64. Martino, R.D. & Astini, R.A. (1998) La faja de deformación del Córdon de la Cumbre, Sistema de Famatina, La Rioja, Argentina. 10th Congreso Latinoamericano de Geología y 6th Congreso de Geología Económica, Buenos Aires, 2, 37.
    [Google Scholar]
  65. McGowen, H. & Groat, C.G. (1971) Van Horn Sandstone, west Texas: an alluvial fan model for mineral exploration. Rep. Bureau Econ. Geol., 72, 52.
    [Google Scholar]
  66. Miall, A.D. (1985) Architectural element Analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev., 22, 261–308.
    [Google Scholar]
  67. Milana, J.P. (1993) Estratigrafía de las eolianitas en la zona de Jachal‐Huaco, Precordillera de San Juan. Rev. Asoc. Geol. Arg., 48, 283–298.
    [Google Scholar]
  68. Mpodozis, C. & Ramos, V. (1989) The Andes of Chile and Argentina. In Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources (Ed. by G.E.Ericksen , Pinochet M.T.Cañas & J.A.Reinemund ), Circum‐Pacific Council for Energy and Mineral Resources, Earth Science Series , 11, 59–90.
    [Google Scholar]
  69. Nemec, W. & Steel, R.J. (1984) Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass‐flow deposits. In: Sedimentology of Gravels and Conglomerates (Ed. by E.H.Koster & R.J.Steel ), Can. Soc. Petrol. Geol. Mem., 10, 1–32.
    [Google Scholar]
  70. Olsen, H. (1989) Sandstone‐body structures and ephemeral stream processes in the Dinosaur Canyon Member, Moenave Formation (Lower Jurassic), Utah, USA. Sediment. Petrol., 61, 207–221.
    [Google Scholar]
  71. Parkash, B., Awasthi, A.K. & Gohain, K. (1983) Lithofacies of the Markanda terminal fan, Kurukshetra district, Haryana, India. In: Modern and Ancient Fluvial Sediments (Ed. by J.D.Collinson & J.Lewin ), pp. 337–344. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  72. Pérez, D.J., Ottone, G. & Ramos, V.A. (1996) La ingresión marina miocena en la provincia de San Juan: sus implicancias paleogeográficas. 13th Congreso Geológico Argentino y 3rd Congreso de Exploración de Hidrocarburos, Proceedings1, 385–398. Buenos Aires.
    [Google Scholar]
  73. Pierson, T.C. & Costa, J.E. (1987) A rheologic classification of subaerial sediment‐water flows. Geol. Soc. Am. Rev. Eng. Geol., 7, 1–12.
    [Google Scholar]
  74. Postma, G. (1986) Classification for sediment gravity‐flow deposits based on flow conditions during sedimentation. Geology, 14, 291–294.
    [Google Scholar]
  75. Potter, P.E. & Pettijohn, F.J. (1977) Paleocurrent and Basin Analysis, 2nd edn. Springer‐Verlag, Berlin.
    [Google Scholar]
  76. Powers, M.C. (1982) Comparison chart for estimating roundness and sphericity. AGI Data Sheet 18, American Geological Institute, Alexandria, VA.
    [Google Scholar]
  77. Ramos, V.A. (1999) Los depósitos sinorogénicos terciarios de la región andina. In: Geología Argentina (Ed. By R.Caminos ), Anales 29 Instituto de Geología y Recursos Minerales , 22, 651–682. Secretaría de Minería de la Nación, Beunos Aires.
    [Google Scholar]
  78. Ramos, V.A., Godoy, E., Godoy, V. & Pángaro, F. (1996) Tectonic evolution of the Main Central Andes at Paso Piuquenes (33°30' S), Argentina and Chile. 3rd Symposium sur la Geódynamique andine, Résumes étendus, Orstom/Géosciences,, 465–468.
    [Google Scholar]
  79. Ramos, V.A., Cristallini, E.O & Pérez, E.J. (2002) The Pampean flat‐slab of the Central Andes. J. South Am. Earth Sci., 15, 59–78.
    [Google Scholar]
  80. Reid, I. & Frostick, L.E. (1987) Flow dynamics and suspended sediment properties in arid zone flash floods. Hydrol., 1, 239–253.
    [Google Scholar]
  81. Reid, I. & Frostick, L.E. (1994) Fluvial sediment transport and deposition. In: Sediment Transport and Depositional Processes(Ed. by K.Pye ), pp. 89–156. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  82. Reynolds, J.H. (1987) Chronology of Neogene Tectonics in Western Argentina (27°‐33°S) based on the magnetic polarity stratigraphy of foreland basin sediments. PhD Thesis, Dartmouth College, Hanover, 353pp (unpublished).
  83. Reynolds, J.H., Jordan, T.E., Johnson, N.M., Damanti, J.F. & Tabbutt, K.T. (1990) Neogene deformation of the flat‐subduction segment of the Argentine‐Chilenean Andes: magnetostratigraphic constrains from Las Juntas, La Rioja Province, Argentina. Geol. Soc. Am. Bull., 102, 1607–1622.
    [Google Scholar]
  84. Riccardi, A.C. (1987) Cretaceous palaeogeography of southern South America. Palaeogeogr. Palaeoclimatol. Palaeoecol., 59, 169–195.
    [Google Scholar]
  85. Salfity, J.A., Gorustovich, J.A., González, R.E., Monaldi, C.R., Marquillas, R.A., Galli, C.I. & Alonso, R.N. (1996) Las cuencas terciarias posincaicas de los Andes centrales de la Argentina. 13th Congreso Geológico Argentino y 3rd Congreso de Exploración de Hidrocarburos,, 1, 453–471.
    [Google Scholar]
  86. Schlische, R.W. (1991) Half‐graben basin filling models: mew constrains on continental extensional basin development. Basin Res., 3, 123–141.
    [Google Scholar]
  87. Schmidt, C.J., Astini, R.A., Costa, C.H., Gardini, C.E. & Kraemer, P.E. (1995) Cretaceous rifting, alluvial fan sedimentation and Neogene inversion, southern Sierras Pampeanas, Argentina. In: Petroleum basins of South America (Ed. by A.J.Tankard , R.SuárezSoruco & H.J.Welsink ), Am. Assoc. Petrol. Geol. Mem., 62, 341–358.
    [Google Scholar]
  88. Schumm, S.A. (1977) The Fluvial System. Wiley, New York.
    [Google Scholar]
  89. Schumm, S.A., Mosley, M.P. & Weaver, W.E. (1987) Experimental Fluvial Geomorphology. John Wiley & Sons, New York.
    [Google Scholar]
  90. Scisciani, V., Calamita, F., Tavarnelli, E., Rusciadelli, G., Ori, G.G. & Paltrinieri, W. (2001) Foreland‐dipping normal faults in the inner edges of syn‐orogenic basins: a case from Central Apennines, Italy. Tectonophysiscs, 330, 211–224.
    [Google Scholar]
  91. Sempere, T., Buttler, R.F., Richards, D.R., Marshall, L.G., Sharp, W. & Swisher, C.C.III (1997) Stratigraphy and chronology of Upper Cretaceous–lower Paleogene strata in Bolivia and northwest Argentina. Geol. Soc. Am. Bull., 109, 709–727.
    [Google Scholar]
  92. Sinclair, H.D. (1997) Tectonostratigraphic model for underfilled peripheral foreland basins: an Alpine perspective. Geol. Soc. Am. Bull., 109, 324–346.
    [Google Scholar]
  93. Smith, G.A. (1986) Coarse‐grained nonmarine volcaniclastic sediment: Terminology and depositional process. Geol. Soc. Am. Bull., 97, 1–10.
    [Google Scholar]
  94. Stear, W.M. (1983) Morphological characteristic of ephemeral stream channel and overbank splay sandstone bodies in the Permian Lower Beaufort Group, Karro Basin, South Africa. In: Modern and Ancient Fluvial Sediments (Ed. by J.D.Collinson & J.Lewin ), pp. 405–420. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  95. Steel, R.J. & Wilson, A.C. (1975) Sedimentation and tectonism (?Permo‐Triassic) on the margin of the North Minch Basin, Lewis. J. Geol. Soc. London, 131, 183–202.
    [Google Scholar]
  96. Steel, R.J., Maehle, S., Nilsen, H., Roe, S.L. & Spinnangr, A. (1977) Coarsening‐upward cycles in the alluvium of Hornelen Basin (Devonian) Norway: sedimentary response to tectonic events. Geol. Soc. Am. Bull., 88, 1124–1134.
    [Google Scholar]
  97. Steinmann, G. (1930) Geología del Perú. Carl Winters Universitätsbuchandlung, Heildelberg.
    [Google Scholar]
  98. Tabbutt, K.D. (1987) Fission track chronology of foreland basins in Eastern Andes: magmatic and tectonic implications. Master Thesis, Dartmouth College, Hanover, 100pp (unpublished).
  99. Tabbutt, K.D. (1990) Temporal constraints on the tectonic evolution of Sierra de Famatina, Northwestern Argentina, using the fission‐track method to date tuff interbedded in synorogenic clastic sedimentary strata. J. Geol., 98, 557–566.
    [Google Scholar]
  100. Tabbutt, K.D., Naeser, C.W., Jordan, T.E. & Cerveny, P.F. (1989) New fission‐track ages of Mio‐Pliocene tuffs in the Sierras Pampeanas and Precordillera of Argentina. Rev. Asoc. Geol. Arg., 44, 408–419.
    [Google Scholar]
  101. Tavarnelli, E. (1999) Normal faults in thrusts sheets: pre‐orogenic extension, post‐orogenic extension or both? J. Struct. Geol., 21, 1011–1018.
    [Google Scholar]
  102. Todd, S. (1989) Stream‐driven, high‐density gravelly traction carpets: possible deposits in the Frabeg Conglometatic Formation, SW Ireland, sand some theoretical considerations of their origin. Sedimentology, 36, 513–530.
    [Google Scholar]
  103. Tunbridge, I.P. (1981) Sandy high energy flood sedimentation – some criteria for recognition, with an example from Devonian of SW England. Sediment. Geol., 28, 79–95.
    [Google Scholar]
  104. Tunbridge, I.P. (1984) Facies model for a sandy ephemeral stream and clay playa complex; the Middle Devonian Trentishoe Formation of North Devon, U.K. Sedimentology, 31, 697–715.
    [Google Scholar]
  105. Turner, J.C.M. (1962) Estratigrafía del tramo medio de la Sierra de Velazco y región oeste (La Rioja). Bol. Acad. Nac. Cs., 43, 5–54.
    [Google Scholar]
  106. Turner, J.C.M (1971) Descripción geológica de la Hoja 15d, Famatina (provincias de Catamarca y La Rioja). Dirección Nacional de Geología y Minería, Buenos Aires.
    [Google Scholar]
  107. Ussami, N., Shiraiwa, S. & Dominguez, J.M.L. (1999) Basement reactivation in a sub‐Andean foreland flexural bulge: the Pantanal Wetland, SW Brazil. Tectonics, 18, 25–39.
    [Google Scholar]
  108. Von Gosen (1992) Structural evolution of the Argentine Precordillera: the Rio San Juan section. J. Struct. Geol., 14, 643–667.
    [Google Scholar]
  109. Whipple, K.N. (1997) Open‐channel flow of Bingham fluids: applications in debris‐flow research. J. Geol., 105, 243–262.
    [Google Scholar]
  110. Williams, G.E. (1971) Flood deposits of the sand‐bed ephemeral streams of Central Australia. Sedimentology, 17, 1–40.
    [Google Scholar]
  111. Yarnold, J.C. (1993) Rock avalanche characteristics in dry climates and the effect of flow into lakes: insights from the mid‐Tertiary sedimentary breccias near Artillery Peak, Arizona. Geol. Soc. Am. Bull., 105, 345–360.
    [Google Scholar]
  112. Yarnold, J.C. & Lombard, J.P. (1989) A facies model for rock avalanche deposits formed in dry climates. In: Conglomerates in Basin Analysis: a Symposium Dedicated to Woodford, A.O (Ed. by I.P.Colburn , P.L.Abbott & J.Minch ), Pacific Sect., 62, 9–31.
    [Google Scholar]
  113. Zhang, G.B. & Bott, M.H.P. (2000) Modelling the evolution of asymmetrical basins bounded by high‐angle reverse faults with application to foreland basins. Tectonophysics, 322, 203–218.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2003.00206.x
Loading
/content/journals/10.1046/j.1365-2117.2003.00206.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error