1887
Volume 15, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Analysis of physical properties measured on cores and on discrete samples collected by the Ocean Drilling Programme (ODP) Leg 178 on the Pacific margin of the Antarctic Peninsula reveals anomalous down‐hole curves of porosity, density, water content, and P‐wave velocity. These indicate an overall trend of increasing porosity with depth and suggest that the drifts are mostly undercompacted. In one of the two boreholes analysed, a sharp decrease in porosity, matching increasing bulk sediment density and increasing compressional velocity occurs towards the base of the hole, which corresponds to a bottom‐simulating reflector in the seismic section. Analysis of seismic reflection, down‐hole logging, geotechnical and mineralogical data from two drilling sites indicates that the observed anomalous consolidation trends are a consequence of the presence of biogenic silica (diatom and radiolarian skeletons) even with a small to moderate amount. Above the bottom‐simulating reflector, intergranular contacts among whole or broken siliceous microfossils prevent normal sediment consolidation. Diagenetic alteration of biogenic opal‐A to opal‐CT causes a dramatic reduction of intra‐ and interskeletal porosity allowing sediments to consolidate at depth. This results in overpressuring and a decrease in the effective stress. Excess fluids are expelled towards the sediment surface through near vertical, small throw normal faults extending from the diagenetic front to the seafloor and affecting the stability of the submarine slope in the form of gravitational creep along a weakened surface.

This work shows how physical properties of shallow fine‐grained marine sediments can be analysed as basin‐wide indicators of biogenic silica abundance. The diagenetic alteration of siliceous microfossils is a possible cause of slope instability along world continental margins where bottom‐simulating reflectors related to silica diagenesis are present at a regional scale.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2003.00210.x
2003-08-21
2020-04-04
Loading full text...

Full text loading...

References

  1. American Society for Testing and Materials
    American Society for Testing and Materials (1982) Annual Book of ASTM Standards: ASTM, 19, Natural Building Stone Soil and Rock. ASTM 710, Philadelphia.
  2. Arthur, M.A., Von Huene, R. & Adelseck, C.G.Jr (1980) Sedimentary evolution of the Japan fore‐arc region of northern Honshu. In: Initial Reports of the Deep Sea Drilling Project, Vol. 56/57 (Ed. by R.Von Huene & N.Nasu ), pp. 521–568. US Government Printing Office, Washington DC.
    [Google Scholar]
  3. Barker, P.F. & Camerlenghi, A. (1999) An approach to Antarctic glacial history: the aims of Leg 178. In: Proceedings of the Ocean Drilling Program, Initial Report, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi & G.D.Acton , et al.), pp. 1–44 [CD‐ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX, USA.
    [Google Scholar]
  4. Barker, P.F., Camerlenghi, A., Acton, G.D. & Ramasay, T. S. (Eds) (1999) Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 178 [CD‐ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX, USA.
    [Google Scholar]
  5. Barker, P.F. & Camerlenghi, A. (2002) Glacial history of the Antarctic Peninsula from Pacific margin sediments. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), pp. 1–40. Proc. ODP Sci. Results, 178, College Station, TX.
    [Google Scholar]
  6. Barker, P.F., Camerlenghi, A., ActonG.D. & Ramsay, A.T.S., (Ed.) (2002) Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 [CD‐ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX, USA.
    [Google Scholar]
  7. Barker, P.F. (1982) The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: ridge crest-trench interactions. Geol. Soc. London J., 139, 787–801.
    [Google Scholar]
  8. Barnes, A.E. (1998) The complex seismic trace made simple. The Leading Edge, 17 (4), 473–478.
    [Google Scholar]
  9. Belbin, S.P. (1994) A new standard method of impregnation using crystic resin. J. Sediment. Res., 64 (A), 3, 673.
    [Google Scholar]
  10. Berndt, C., Bünz, S. & Mienert, J. (in press) Polygonal fault systems on the mid‐Norwegian margin: a long‐term source for fluid flow. In: Subsurface Sediment Mobilization (Ed. by P.Rensbergen & C.Morley ), Geol. Soc. London, Spec. Publ .
    [Google Scholar]
  11. Bohrmann, G., Spiess, V., Hinze, H. & Kuhn, G. (1992) Reflector ‘Pc’ a prominent feature in the Moud Rise sediment sequence (eastern Weddell Sea): occurrence, regional distribution and implications to silica diagenesis. Mar. Geol., 106, 69–87.
    [Google Scholar]
  12. Bohrmann, G., Kuhn, G., Abelmann, A., Gersonde, R. & Fütterer, D. (1990) A young porcellanite occurrence from the Southwest Indian Ridge. Mar. Geol., 92, 155–163.
    [Google Scholar]
  13. Bohrmann, G., Stein, R. & Faugères, J.‐C. (1989) Authigenic zeolites and their relation to silica diagenesis in ODP Site 661 sediments (Leg 108, Eastern Equatorial Atlantic). Geol. Rundsch., 78/3, 779–792.
    [Google Scholar]
  14. Brekke, H. (2000) The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. In: Dynamics of the Norwegian Margin, Vol. 167 (Ed. by A.Nøttvedt , B. T.Larsen , S. Olaussen , B.Torudbakken , J.Skogseid , R.H.Gabrielsen , H.Brekke & O.Birkeland ), Geol. Soc. London, Spec. Publ., pp. 327–378.
    [Google Scholar]
  15. Brekke, H., Dahlgren, S., Nyland, B. & Magnus, C. (1999) The prospectivity of the Vøring and Møre Basins on the Norwegian Sea continental margin. In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference Vol. 86 (Ed. by A.J.Fleet & S.A.R.Boldy ), Geol. Soc. London, Spec. Publ., pp. 261–274.
    [Google Scholar]
  16. Broglia, C. & Ellis, D. (1990) Effect of alteration, formation absorption, and standoff on the response of the thermal neutron porosity log in gabbros and basalts: examples from Deep Sea Drilling Project–Ocean Drilling Program sites. J. Geophys. Res., 95, 9171–9188.
    [Google Scholar]
  17. Brown, K.M. & Ransom, B. (1996) Porosity corrections for smectite‐riche sediments: impact on studies of compaction, fluid generation, and tectonic history. Geology, 24 (9), 843–846.
    [Google Scholar]
  18. Bryant, W.R. & Rack, F.R. (1990) Consolidation characteristics of Weddell Sea sediments: results of ODP Leg 113. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 113 (Ed. by P.F.Barker , J.P.Kennett , S.O'Conell & N.G.Pisias ), pp. 201–223. College Station, TX.
    [Google Scholar]
  19. Bryant, W.R., Bennett, R.H. & Katerman, C.E. (1981) Shear strength, consolidation, porosity, and permeability of oceanic sediments. In: The Sea, Vol. 7 (Ed. by C.Emiliani ), pp. 1555–1616. J. Wiley & Sons, New York.
    [Google Scholar]
  20. Bryant, W.R., Deflacke, A.P. & Trabant, P.K. (1974) Consolidation of marine clays and carbonates. In: Deep Sea Sediments; Physical and Mechanical Properties; Determination of Mechanical Properties in Marine Sediments. Mar. Sci., 2, 209–244.
    [Google Scholar]
  21. Camerlenghi, A., Crise, A., Pudsey, C.J., Accerboni, E., Laterza, R. & Rebesco, M. (1997) Ten‐month observation of the bottom current regime across a sediment drift of the Pacific margin of the Antarctic Peninsula. Antarctic Sci., 9 (4), 424–431.
    [Google Scholar]
  22. Cande, S.C. & Kent, D.V. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100, 6093–6095.
    [Google Scholar]
  23. Cartwright, J.A. (1994) Episodic basin‐wide fluid expulsion from geopressured shale sequences in the North Sea basin. Geology, 22, 447–450.
    [Google Scholar]
  24. Cartwright, J.A. & Dewhurst, D.N. (1998) Layer‐bound compaction faults in fine‐grained sediments. Geol. Soc. Am. Bull., 110 (19), 1242–1257.
    [Google Scholar]
  25. Casagrande, A. (1948) Classification and identification of soils. Trans ASCE, 113, 901p.
    [Google Scholar]
  26. Casagrande, A. (1936) The determination of the preconsolidation load and its practical significance. Proc. Int. Conf. 1st, Soil Mech. Foundation Eng., 3, 60–64.
    [Google Scholar]
  27. Chamley, H. (1989) Clay Sedimentology. Springer‐Verlag, Berlin.
    [Google Scholar]
  28. Cooper, A.K., Barrett, P.J., Hinz, K., Traube, V., Leitchenkov, G. & Stagg, H.M.J. (1991) Cenozoic prograding sequences of the Antarctic continental margin: a record of glacio-eustatic and tectonic events. Mar. Geol., 102, 175–213.
    [Google Scholar]
  29. Davies, R.J. & Cartwright, J. (2002) A fossilized Opal A to Opal C/T transformation on the northeast Atlantic margin: support for a significantly elevated Palaeogeothermal gradient during the Neogene. Basin Res., 14, 467–486.
    [Google Scholar]
  30. Demaison, G.J. & Moore, G.T. (1980) Anoxic environment and oil source bed genesis. Org. Geochem., 2, 9–13.
    [Google Scholar]
  31. Dickinson, G. (1953) Geological aspects of abnormal reservoirs pressure in the Gulf Coast Louisiana. Am. Assoc. Petrol. Geol. Bull., 37, 410–432.
    [Google Scholar]
  32. Diekmann, B., Kuhn, G., Mackensen, A., Petschick, R., Fütterer, D.K., Gersonde, R., Rühlemann, C. & Niebler, H.S. (1999) Kaolinite and chlorite as tracers of modern and Late Quaternary deep water circulation in the South Atlantic and the adjoining Southern Ocean. In: Use of Proxies in Paleoceanography: Examples from the South Atlantic (Ed. by G.Fischer & G.Wefer ), Springer‐Verlag, Berlin.
    [Google Scholar]
  33. Domenico, S.N. (1977) Elastic properties of unconsolidated porous sand reservoirs. Geophysics, 42, 1339–1368.
    [Google Scholar]
  34. Dugan, B. & Flemings, P.B. (2000) Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science, 289, 288–291.
    [Google Scholar]
  35. Ernst, W.G. & Calvert, S.E. (1969) An experimental study of the recrystallization of porcelanite and its bearing on the origin of some bedded cherts. Am. J. Sci., 267‐A, 114–133.
    [Google Scholar]
  36. Fischer, A.G. (1971) Problems of chert in ocean. Bull. Am. Assoc. Petrol. Geol., 52/2, 38.
    [Google Scholar]
  37. Fofonoff, N.P. & Millard, R.C.Jr (1983) Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci. (Paris), 44, 15–24.
    [Google Scholar]
  38. Goldberg, D. (1997) The role of down‐hole measurements in marine geology and geophysics. Rev. Geophys., 35, 315–342.
    [Google Scholar]
  39. Hamilton, E.L. (1976) Variations of density and porosity with depth in deep‐sea sediments. J. Sediment. Petrol., 46 (2), 280–300.
    [Google Scholar]
  40. Hamilton, E.L. (1971) Elastic properties of marine sediments. J. Geophys. Res., 76 (2), 579–604.
    [Google Scholar]
  41. Hammond, R.D. & Gaither, J.R. (1983) Anomalous seismic character – Bearing Sea shelf. Geophysics, 48 (5), 590–605.
    [Google Scholar]
  42. Hedberg, H.D. (1974) Relation of methane generation to undercompacted shales, shale diapirs, and mud volcanoes. Am. Assoc. Petrol. Geol. Bull., 58 (4), 661–673.
    [Google Scholar]
  43. Hein, J.R., Scholl, D.W., Barron, J.A., Jones, M.G. & Miller, J. (1978) Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea. Sedimentology, 25, 155–181.
    [Google Scholar]
  44. Henriet, J.P., DeBatist, M. & Verschuren, M. (1991) Early fracturing of Paleogene clays, southernmost North Sea: relevance to mechanisms of primary hydrocarbon migration. In: Generation, Accumulation and Production of Europe's Hydrocarbons (Ed. by A.M.Spencer ), Spec. Publ. Eur. Assoc. Petrol. Geol. , 1, 217–227.
    [Google Scholar]
  45. Herron, E.M. & Tucholke, B.E. (1976) Seafloor magnetic patterns and basement structure in the southwestern Pacific. In: Initial Reports, Deep Sea Drilling Project, Vol. 35 (Ed. by C.D.Hollister , C.Craddock , Y.A.Bogdanov , N.T.Edgar , J.M.Gieskes , B.U.Haq , J.R.Laurence , F.Rogl , H.‐J.Schrader , B.E.Tucholke , W.R.Vennum , F.M.Weaver & V.N.Zhivago ), pp. 263–278. US Government Printing Office, Washington.
    [Google Scholar]
  46. Hillenbrand, C.‐D. & Ehrmann, W. (2001) Distribution of clay minerals in drift sediments on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095 and 1096. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), pp. 1–29 Available from: World Wide Web: http://www.odp.tamu.edu/publications/178_SR/VOLUME/CHAPTERS/SR17808.PDF
    [Google Scholar]
  47. Hillenbrand, C.‐D. & Fütterer, D.K. (2001) Neogene to Quaternary deposition of opal on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095, 1096, and 1101. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), [Online]. Available from: World Wide Web:〈http://www.odp.tamu.edu/publications/178_SR/chap_23/chap_23.htm〉
    [Google Scholar]
  48. Iwai, M., Acton, G.D., Lazarus, D., Osterman, L.E. & Williams, T. (2002) Magnetobiochronologic synthesis of ODP Leg 178 rise sediments from the Pacific sector of the Southern Ocean: Sites 1095, 1096, and 1101. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), Available from: World Wide Web: http://www.odp.tamu.edu/publications/178_SR/chap_36/chap_36.htm
    [Google Scholar]
  49. Kastner, M. & Stonecipher, S.A. (1978) Zeolites in pelagic sediments of the Atlantic, Pacific and Indian Oceans. In: Natural Zeolites (Ed. by L.B.Sand & F.A.Mumpton ), pp. 199–220. Pergamon Press, New York.
    [Google Scholar]
  50. Kvenvolden, K.A., Golan‐Bac, M. & Rapp, J.B. (1987) Hydrocarbon geochemistry of sediments offshore from Antarctica: Wilkes Land continental margin. In: The Antarctic Continental Margin: Geology and Geophysics Offshore Wilkes Land (Ed. by S.L.Eittreim & M.A.Hampton ), Circum. Pacific Council Energy Mineral Resources, Earth Sci. Ser. , 5A, 205–213.
    [Google Scholar]
  51. Larter, R.D. & Barker, P.F. (1991) Effects of ridge crest‐trench interaction on Antarctic–Phoenix spreading: forces on a young subducting plate. J. Geophys. Res., 96, 19583–19607.
    [Google Scholar]
  52. Littke, R., Fourtanier, E., Thurow, J. & Taylor, E. (1991) Silica diagenesis and its effects on lithification of broken ridge deposits, Central Indian Ocean. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 121 (Ed. by J.Weissel , J.Alt , J.Peirce & E.Taylor , et al.), pp. 261–270. College Station, TX.
    [Google Scholar]
  53. Locat, J. & Tanaka, H. (2001) A new class of soils: fossiliferous soils? In: Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 3, Istanbul, 27–31 August 2001, pp. 2295–2300.
    [Google Scholar]
  54. Locat, J. & Lee, H.J. (2002) Submarine landslides: advances and challenges. Can. Geotech. J., 39, 193–212.
    [Google Scholar]
  55. Locat, J. & Mienert, J. (2003) Submarine Mass Movements and their Consequences. Kluwer Academic Publishers, Netherlands.
    [Google Scholar]
  56. Lodolo, E., Camerlenghi, A., Madrussani, G., Tinivella, U. & Rossi, G. (2002) Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data. Geophys. J. Int., 148 (1), 103–119.
    [Google Scholar]
  57. Lodolo, E. & Camerlenghi, A. (2000) The occurrence of BSRs on the Antarctic margin. In: Natural Gas Hydrate in Oceanic and Permafrost Environments (Ed. by M.D.Max ), pp. 199–213. Kluwer Academic Publishers, Dordrecht.
    [Google Scholar]
  58. Lonsdale, M.J. (1990) The relationship between silica diagenesis, methane, and seismic reflections on the South Orkney microcontinent. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 113 (Ed. by P.F.Barker , J.P.Kennet , S.O'Conell & N.G.Pisias ), pp. 27–37. College Station, TX.
    [Google Scholar]
  59. Lucchi, R., Rebesco, M., Camerlenghi, A., Busetti, M., Tomadin, L., Villa, G., Persico, D., Morigi, C., Bonci, M.C. & Giorgetti, G. (2002) Mid‐late Pleistocene glacimarine sedimentary processes of a high‐latitude, deep‐sea sediment drift (Antarctic Peninsula Pacific margin). Mar. Geol., 189, 343–370.
    [Google Scholar]
  60. McGinnis, J.P. & Hayes, D.E. (1995) The roles of downslope and along‐slope depositional processes: southern Antarctic Peninsula continental rise. In: Geology and Seismic Stratigraphy of the Antarctic Margin (Ed. by A.K.Cooper , P.F.Barker & G.Brancolini ), Antarctic Res. Ser., 68, 141–156.
    [Google Scholar]
  61. Mienert, J., Berndt, C., Laberg, J.S. & Vorren, T.O. (2002) Slope instability of continental margins. In: Ocean Margin Systems (Ed. by G.Wefer , D.Billett , D.Hebblen , B.B.Jørgenses , M.Schlüter & T.Van Weering ), pp. 179–193. Springer‐Verlag, Berlin.
    [Google Scholar]
  62. McGinnis, J.P., Hayes, D.E. & Driscoll, N.W. (1997) Sedimentary processes across the continental rise of the southern Antarctic Peninsula. Mar. Geol., 141, 91–109.
    [Google Scholar]
  63. Mizutani, S. (1970) Silica minerals in the early stage of diagenesis. Sedimentology, 15, 419–436.
    [Google Scholar]
  64. Moerz, T. & Wolf‐Welling, T.C.W. (2001) Data report: fine‐fraction grain‐size distribution data and their statistical treatment and relation to processes, Site 1095 (ODP Leg 178, western Antarctic Peninsula). In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), Available from: World Wide Web: http://www.odp.tamu.edu/publications/178_SR/chap_24/chap_24.htm.
    [Google Scholar]
  65. Müller, P.J. & Schneider, R. (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res., 40, 425–444.
    [Google Scholar]
  66. Nobes, D.C., Murray, R.W., Kuramoto, S., Pisciotto, K.A. & Holler, P. (1992) Impact of silica diagenesis on physical property variations. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 127/128 (Ed. by K.A.Pisciotto , J.C.IngleJr , M.T.Von Breymann & J.Barron ), pp. 3–31. College Station, TX.
    [Google Scholar]
  67. Pankhurst, R.J. (1990) The Paleozoic and Andean magmatic arcs of West Antarctica and southern South America. In: Plutonism form Antarctica to Alaska (Ed. by S.M.Kay & C.W.Rapela ), Geol. Soc. Am. Spec. Pap. , 241, 1–7.
    [Google Scholar]
  68. Pecher, I.A. & Holbrook, S.W. (2000) Seismic methods for detecting and quantifying marine methane hydrates/free gas reservoirs. In: Natural Gas Hydrate in Oceanic and Permafrost Environments (Ed. by M.D.Max ), pp. 275–294. Kluwer Academic Publishers, Dordrecht.
    [Google Scholar]
  69. Pittinger, A., Taylor, E. & Bryant, W. (1989) The influence of biogenic silica on the geotechnical stratigraphy of the Vøring Plateau, Norwegian Sea. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 104 (Ed. by O.Eldholm , J.Thiede , E.Taylor , C.Barton , K.Bjorklund , N.Bleil , P.Cieselsky , A.Desprairies , D.Donnally , C.Froget , R.Gall , R.Henrich , E.Janse , L.Krissek , K.Kvenvolden , A.LeMurray , D.Love , P.Lysne , T.McDonald , P.Mudie , L.Osterman , L.Parson , J.D.Phillips , A.Pittenger , G.Schonharting & L.Viererck ), pp. 923–940. College Station, TX.
    [Google Scholar]
  70. Pudsey, C.J. (2001b) Data report: Grain‐size data, Sites 1095, 1096, and 1101, Antarctic Peninsula continental rise. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), Available from: World Wide Web: 〈http://www.odp.tamu.edu/publications/178_SR/chap_12/chap_12.htm〉
    [Google Scholar]
  71. Pudsey, C.J. (2001a) Neogene record of Antarctic Peninsula glaciation in continental rise sediments: ODP Leg 178, Site 1095. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), Available from: World Wide Web: 〈http://www.odp.tamu.edu/publications/178_SR/chap_25/chap_25.htm〉
    [Google Scholar]
  72. Pudsey, C.J. (2000) Sedimentation on the continental rise west of the Antarctic Peninsula over the last three glacial cycles. Mar. Geol., 167, 313–338.
    [Google Scholar]
  73. Pudsey, C.J. & Camerlenghi, A. (1998) Glacial–interglacial deposition on a sediment drift on the Pacific margin of the Antarctic Peninsula. Antarctic Sci., 10, 286–308.
    [Google Scholar]
  74. Rack, F.R. & Palmer‐Julson, A. (1992) Sediment microfabric and physical properties record of late Neogene polar front migration, Site 751. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 120 (Ed. by S.W.Wise, Jr ., A.A.Palmer‐Julson , R.Schlich & E.Thomas ), pp. 179–205. College Station, TX.
    [Google Scholar]
  75. Ransom, B. & Helgeson, H.C. (1994) A chemical and thermodynamic model of dioctehedral 2 : 1 layer clay minerals in diagenetic processes: regular solution representation of interlayer dehydration in smectite. Am. J. Sci., 294, 449–484.
    [Google Scholar]
  76. Rebesco, M., Pudsey, C.J., Canals, M., Camerlenghi, A., Barker, P.F., Estrada, F. & Giorgetti, A. (2002) Sediment drift and deep‐sea channel systems, Antarctic Peninsula Pacific margin. In: Deep‐Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics (Ed. by D.A.V.Stow , C.J.Pudsey , J.A.Howe , J.C.Faugeres & A.R.Viana ), Geol. Soc. London, Mem. , 22, 353–371.
    [Google Scholar]
  77. Rebesco, M., Camerlenghi, A. & Zanolla, C. (1998) Bathymetry and morphogenesis of the continental margin West of the Antarctic Peninsula. Terra Antarctica, 5 (4), 715–725.
    [Google Scholar]
  78. Rebesco, M., Larter, R.D., Barker, P.F., Camerlenghi, A. & Vanneste, L.E. (1997) The history of sedimentation on the continental rise west of the Antarctic Peninsula. In: Geology and Seismic Stratigraphy of the Antarctic Margin (Ed. by P.F.Barker & A.K.Cooper ), Am. Geophys. Union Antarctic Res. Ser. , 71 (Part 2), 29–49.
    [Google Scholar]
  79. Rebesco, M., Larter, R.D., Camerlenghi, A. & Barker, P.F. (1996) Giant sediment drifts on the continental rise west of the Antarctic Peninsula. Geo-Mar. Lett., 16, 65–75.
    [Google Scholar]
  80. Riech, V. (1981) Siliceous sediments from the Nauru Basin: diagenetic alteration of biogenic opal and authigenesis of silica and silicates. In: Initial Reports. DSDP, Vol. 61 (Ed. by R.L.Larson , S.O.Schlanger , R.Batiza , R.E.Boyce , P.Cepek , P.DeWever , N.Fujii , H..C.Jenkins , V.Koporulin , R.Moberley , I.Premoli Silva , D.Rea , V.Riech , W.O.Sayer , K.Seifert , S.Shcheka , W.V.Sliter , M.Steiner , J.Thiede , H.Thierstein , H.Tokuyama , T.Vallier & K.Windom ), pp. 523–531. US Government Printing Office, Washington, DC.
    [Google Scholar]
  81. Riech, V. & Von Rad, U. (1979) Silica diagenesis in the Atlantic Ocean: diagenetic potential and transformations. In: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment (Ed. by M.Talwani , W.Hay & W.B.Ryan ), Am. Geophys. Union Maurice Ewing Ser. , 3, 315–341.
    [Google Scholar]
  82. Sangrey, D.A. (1977) Marine geotechnology – state of the art. Mar. Geotechnol., 2, 45–80.
    [Google Scholar]
  83. Shipboard Scientific Party
    Shipboard Scientific Party (1999) Site 1096. In: Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi & G.D.Acton , et al.), pp. 1–144 [CD‐ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX, USA.
    [Google Scholar]
  84. Smith, S.J. & Anderson, S.R. (1995) A method for impregnating soft sediment cores for thin‐section microscopy. J. Sediment. Res., 65 (A)‐3, 576–577.
    [Google Scholar]
  85. Stonecipher, S.A. (1976) Origin, distribution and diagenesis of phyllipsite and clinoptilolite in deep‐sea sediments. Chem. Geol., 17, 307–318.
    [Google Scholar]
  86. Tanahashi, M., Eittreim, S. & Wannesson, J. (1994) Seismic stratigraphy sequences of the Wilkes Land margin. Terra Antarctica, 1, 391–393.
    [Google Scholar]
  87. Tanaka, H. & Locat, J. (1999) A microstructural investigation of Osaka Bay clay: the impact of microfossils on its mechanical behaviour. Can. Geotech. J., 36, 493–508.
    [Google Scholar]
  88. Taner, M.T., Koehler, F. & Sheriff, R.E. (1979) Complex seismic trace analysis. Geophysics, 44 (6), 1041–1063.
    [Google Scholar]
  89. Tribble, J.S., Mackenzie, F.T., Urmos, J., O'brien, D.K. & Manghnani, M.H. (1992) Effects of biogenic silica on acoustic and physical properties of clay‐rich marine sediments. Am. Assoc. Petrol. Geol. Bull., 76 (6), 792–804.
    [Google Scholar]
  90. Trimm, B.A. (1989) Analysis of preconsolidation pressure methods for fine‐grained marine sediments. MS Thesis, Texas A.M. University, College Station, TX, USA.
  91. Volpi, V., Camerlenghi, A., Moerz, T., Corubolo, P., Rebesco, M. & Tinivella, U. (2001) Data report: Physical properties relevant to seismic stratigraphic studies, continental rise Sites 1095, 1096, and 1101, ODP Leg 178, Antarctic Peninsula. In: Proceedings of the Ocean Drilling Program, Vol. 178 (Ed. by P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), Available from World Wide Web: http://www.odp.tamu.edu/publications/178_SR/chap_17/chap_17.htm
    [Google Scholar]
  92. Weber, M.E., Niessen, F., Kuhn, G. & Wiedicke, M. (1997) Calibration and application of marine sedimentary physical properties using a multi‐sensor core logger. Mar. Geol., 136, 151–172.
    [Google Scholar]
  93. Wolf‐Welling, T.C.W., Moerz, T., Hillenbrand, C.‐D., Pudsey, C.J. & Cowan, E.A. (2001) Data report: bulk sediment parameters (CaCO3, TOC, and >63 μm) of Sites 1095, 1096, and 1101, and coarse fraction analysis of Site 1095 (ODP Leg 178, western Antarctic Peninsula). In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 178 (Ed. By P.F.Barker , A.Camerlenghi , G.D.Acton & A.T.S.Ramsay ), Available from: World Wide Web: http://www.odp.tamu.edu/publications/178_SR/chp_15/chap_15.htm
    [Google Scholar]
  94. Yilmaz, O. (2001) Seismic data processing. In: Investigations in Geophysics, Vol. 2 (Ed. by M.Stephen Doherty ), pp. 1–526 Society of Exploration Geophysics.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2003.00210.x
Loading
/content/journals/10.1046/j.1365-2117.2003.00210.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error