1887
Volume 15, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The distribution of detrital mineral cooling ages in river sediment provides a proxy record for the erosional history of mountain ranges. We have developed a numerical model that predicts detrital mineral age distributions for individual catchments in which particle paths move vertically toward the surface. Despite a restrictive set of assumptions, the model permits theoretical exploration of the effects of thermal structure, erosion rate, and topography on cooling ages. Hypsometry of the source‐area catchment is shown to exert a fundamental control on the frequency distribution of bedrock and detrital ages. We illustrate this approach by generating synthetic 40Ar/39Ar muscovite age distributions for two catchments with contrasting erosion rates in central Nepal and then by comparing actual measured cooling‐age distributions with the synthetic ones. Monte Carlo sampling is used to assess the mismatch between observed and synthetic age distributions and to explore the dependence of that mismatch on the complexity of the synthetic age signal and on the number of grains analysed. Observed detrital cooling ages are well matched by predicted ages for a more slowly eroding Himalayan catchment. A poorer match for a rapidly eroding catchment may result from some combination of large analytical uncertainties in the detrital ages and inhomogeneous erosion rates within the basin. Such mismatches emphasize the need for more accurate thermal and kinematic models and for sampling strategies that are adapted to catchment‐specific geologic and geomorphic conditions.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2003.00211.x
2003-08-21
2024-04-25
Loading full text...

Full text loading...

References

  1. Adams, C.J., Barley, M.E., Fletcher, I.R. & Pickard, A.L. (1998) Evidence from U‐Pb zircon and 40Ar/39Ar muscovite detrital mineral ages in metasandstones for movement of the Torlesse suspect terrane around the eastern margin of Gondwanaland. Terra Nova, 10, 183–189.
    [Google Scholar]
  2. Batt, G.E. & Brandon, M.T. (2002) Lateral thinking: 2‐D interpretation of thermochronology in convergent orogenic settings. Tectonophysics, 349, 185–201.
    [Google Scholar]
  3. Beaumont, C., Fullsack, P. & Hamilton, J. (1994) Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere. Tectonophysics, 232, 119–132.
    [Google Scholar]
  4. Bernet, M., Brandon, M.T. & Garver, J.I.(in press) Downstream changes in detrital zircon FT cooling ages in large modern rivers. J. Sediment. Res.
    [Google Scholar]
  5. Bernet, M., Zattin, M., Garver, J.I., Brandon, M.T. & Vance, J.A. (2001) Steady‐state exhumation of the European Alps. Geology, 29, 35–38.
    [Google Scholar]
  6. Bevington, P. & Robinson, K. (1992) Data Reduction and Error Analysis for the Physical Sciences. WCB/McGraw‐Hill, San Francisco.
    [Google Scholar]
  7. Bloom, A. (1998) Geomorphology. A Systematic Analysis of Late Cenozoic Landforms. Prentice Hall, Upper Saddle River.
    [Google Scholar]
  8. Brandon, M.T. (1992) Decomposition of fission‐track grain‐age distributions. Am. J. Sci., 292, 535–564.
    [Google Scholar]
  9. Brandon, M.T. (1996) Probability density plot for fission – track grain – age samples. Radiation Measurements, 26, 663–676.
    [Google Scholar]
  10. Brandon, M.T. (2002) Decomposition of mixed grain‐age distributions using BINOMFIT. On Track, 24, 13–18.
    [Google Scholar]
  11. Brandon, M.T. & Vance, J.A. (1992) Fission‐track ages of detrital zircon grains: implications for the tectonic evolution of the Cenozoic Olympic subduction complex. Am. J. Sci., 292, 565–636.
    [Google Scholar]
  12. Brown, E.T., Stallard, R.F., Larsen, M.C., Raisbeck, G.M. & Yiou, F. (1995) Denudation rates determined from the accumulation of in situ‐produced 10Be in the Luquillo experimental forest, Puerto Rico. Earth Planet. Sci. Lett., 129, 193–202.
    [Google Scholar]
  13. Brozović, N., Burbank, D.W. & Meigs, A.J. (1997) Climatic limits on landscape development in the northwestern Himalaya. Science, 276, 571–574.
    [Google Scholar]
  14. Burbank, D.W. (2002) Rates of erosion and their implications for exhumation. Mineral. Mag., 66, 25–52.
    [Google Scholar]
  15. Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R. & Duncan, C. (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505–510.
    [Google Scholar]
  16. Burchfiel, B.D., Zhileng, C., Hodges, K.V., Yuping, L., Royden, L.H., Changrong, D. & Jiene, X. (1992) The South Tibetan detachment system, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol. Soc. Am. Spec. Pap., 269, 1–41.
    [Google Scholar]
  17. Catlos, E.J., Harrison, T.M., Kohn, M.J., Grove, M., Ryerson, F.J., Manning, C.E. & Upreti, B.N. (2001) Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J. Geophys. Res., 106, 16,177–16,204.
    [Google Scholar]
  18. Cerveny, P.F., Naeser, N.D., Zeitler, P.K., Naeser, C.W. & Johnson, N.M. (1988) History of uplift and relief of the Himalaya during the past 18 million years; evidence from sandstones of the Siwalik Group. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinspehn & C.Paola ), pp. 43–61. Springer‐Verlag, New York.
    [Google Scholar]
  19. Colchen, M., LeFort, P. & Pêcher, A. (1986) Annapurna–Manaslu–Ganesh Himal. Centre National de la Recherche Scientifique, Paris.
    [Google Scholar]
  20. Coleman, M.E. (1996) Orogen‐parallel and orogen‐perpendicular extension in the central Nepalese Himalayas. Geol. Soc. Am. Bull., 108, 1594–1607.
    [Google Scholar]
  21. Coleman, M.E. & Hodges, K.V. (1995) Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east‐west extension. Nature, 374, 49–52.
    [Google Scholar]
  22. Copeland, P. & Harrison, M.T. (1990) Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K‐feldspar and muscovite, Bengal fan. Geology, 18, 354–359.
    [Google Scholar]
  23. Copeland, P., Harrison, T.M., Hodges, K.V., Maruejol, P., LeFort, P. & Pecher, A. (1991) An early Pliocene thermal disturbance of the Main Central Thrust, central Nepal: implications for Himalayan tectonics. J. Geophys. Res., 96, 8475–8500.
    [Google Scholar]
  24. Copeland, P., Harrison, T.M. & LeFort, P. (1990) Age and cooling history of the Manaslu granite: implications for Himalayan tectonics. J. Volcanol. Geother. Res., 44, 33–50.
    [Google Scholar]
  25. Dodson, M. (1973) Closure temperature in cooling thermochronological and petrological systems. Contrib. Mineral. Petrol., 40, 259–274.
    [Google Scholar]
  26. Edwards, R.M. (1995) 40Ar/39Ar geochronology of the Main Central Thrust (MCT) region: evidence for Late Miocene to Pliocene disturbances along the MCT, Marsyandi River valley, west‐central Nepal Himalaya. J. Nepal Geol. Soc., 10, 41–46.
    [Google Scholar]
  27. Fletcher, C.A.J. (1991) Computational Techniques for Fluid Dynamics. Springer Verlag, New York.
    [Google Scholar]
  28. Fowler, C.M.R. (1990) The Solid Earth, an Introduction to Geophysics. Cambridge University Press, Cambridge.
    [Google Scholar]
  29. Garver, J.I. & Brandon, M.T. (1994) Fission‐track ages of detrital zircons from Cretaceous strata, southern British Columbia: implications for the Baja BC hypothesis. Tectonics, 13, 401–420.
    [Google Scholar]
  30. Garver, J.I., Brandon, M.T., Roden‐Tice, M. & Kamp, P.J.J. (1999) Exhumation history of orogenic highlands determined by detrital fission‐track thermochronology. Geol. Soc. Spec. Publ., 154, 283–304.
    [Google Scholar]
  31. Harrison, T.M., Ryerson, F.J., Le Fort, P., Yin, A., Lovera, O.M. & Catlos, E.J. (1997) A late Miocene‐Pliocene origin for the central Himalayan inverted metamorphism. Earth Planet. Sci. Lett., 146, E1–E7.
    [Google Scholar]
  32. Henry, P., Le Pichon, X. & Goffé, B. (1997) Kinematic, thermal and petrological model of the Himalayas: constraints related to metamorphism within the underthrust Indian crust and topographic elevation. Tectonophysics, 273, 31–56.
    [Google Scholar]
  33. Hodges, K. & Bowring, S. (1995) 40Ar/39Ar thermochronology of isotopically zoned micas: insights from the southwestern USA Proterozoic orogen. Geochim. Cosmochim. Acta, 59, 3205–3220.
    [Google Scholar]
  34. Hodges, K.V. (1998) 40Ar/39Ar thermochronology using the laser microprobe. In: Reviews in Economic Geology 7: Applications of Microanalytical Techniques to Understanding Mineralizing Processes (Ed. by M.A.McKibben & W.C.Shanks ), pp. 53–72. Society of Economic Geologists, Tuscaloosa.
    [Google Scholar]
  35. Hodges, K.V. (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull., 112, 324–350.
    [Google Scholar]
  36. Hodges, K.V., Ruhl, K., Whipple, K.X. & Wobus, C. (2002) History of the Main Central Thrust system in the Marsyandi valley, central Nepal: evidence for steady‐state orogenesis in the Himalaya? Geol. Soc. Am. Abstr. Programs, 34, 411.
    [Google Scholar]
  37. Hurford, A.J. & Carter, A. (1991) The role of fission track dating in discrimination of provenance. Geol. Soc. Spec. Publ., 57, 67–78.
    [Google Scholar]
  38. Kooi, H. & Beaumont, C. (1996) Large‐scale geomorphology: classical concepts reconciled and integrated with contemporary ideas via a surface processes model. J. Geophys. Res., 101, 3361–3386.
    [Google Scholar]
  39. Krogh, T.E. & Keppie, J.D. (1987) Detrital zircon ages indicating a North African provenance for the Goldenville Formation of Nova Scotia. In: Mines and Minerals Branch Report of Activities (Ed. by J.L.Bates & D.R.MacDonald ), pp. 208. Department of Mines and Energy, Halifax.
    [Google Scholar]
  40. Lavé, J. & Avouac, J.P. (2001) Fluvial incision and tectonic uplift across the Himalaya of Central Nepal. J. Geophys. Res., 106, 26,561–26,591.
    [Google Scholar]
  41. MacFarlane, A.M. (1993) Chronology of tectonic events in the crystalline core of the Himalaya, Langtang National Park, central Nepal. Tectonics, 12, 1004–1025.
    [Google Scholar]
  42. MacFarlane, A.M., Hodges, K.V. & Lux, D. (1992) A structural analysis of the Main Central Thrust zone, Langtang National Park, central Nepal. Geol. Soc. Am. Bull., 104, 1389–1402.
    [Google Scholar]
  43. Mancktelow, N.S. & Grasemann, B. (1997) Time‐dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics, 270, 167–195.
    [Google Scholar]
  44. McGoldrick, P.J. & Gleadow, A.J.W. (1978) Fission‐track dating of lower Palaeozoic sandstones at Tatong, North central Victoria. J. Geol. Soc. Aust., 24, 461–464.
    [Google Scholar]
  45. Molnar, P. & England, P. (1990) Late Cenozoic uplift of mountain ranges and global climatic change: chicken or egg? Nature, 346, 29–34.
    [Google Scholar]
  46. Montgomery, D.R. (2001) Slope distributions, threshold hillslopes, and steady‐state topography. Am. J. Sci., 301, 432–454.
    [Google Scholar]
  47. Montgomery, D.R. & Brandon, M.T. (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett., 201, 481–489.
    [Google Scholar]
  48. Najman, Y.M.R., Pringle, M.S., Johnson, M.R.W., Robertson, A.H.F. & Wijbrans, J.R. (1997) Laser 40Ar/39Ar dating of single detrital muscovite grains from early foreland‐basin sedimentary deposits in India: implications for early Himalayan erosion. Geology, 25, 535–538.
    [Google Scholar]
  49. Ohmori, H. (1992) Morphological characteristics of the scar created by large‐scale rapid mass movement. Jpn. Geomorphol. Union Trans., 13, 185–202.
    [Google Scholar]
  50. Pratt, B., Burbank, D.W., Heimsath, A. & Ojha, T. (2002) Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalaya. Geology, 30, 911–914.
    [Google Scholar]
  51. Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. (1992) Numerical Recipes in Fortran: the Art of Scientific Computing. Cambridge University Press, Cambridge.
    [Google Scholar]
  52. Robinson, D.M., DeCelles, P.G., Garzione, C.N., Pearson, O.N., Harrison, T.M. & Catlos, E.J. (2003) Kinematic model for the Main Central thrust in Nepal. Geology, 31, 359–362.
    [Google Scholar]
  53. Robinson, D.M.D., Patchett, P.J. & Garzione, C.N. (2001) The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet. Sci. Lett., 192, 507–521.
    [Google Scholar]
  54. Seeber, L. & Gornitz, V. (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics, 92, 335–367.
    [Google Scholar]
  55. Stock, J.D. & Montgomery, D.R. (1996) Estimating palaeorelief from detrital mineral age ranges. Basin Res., 8, 317–328.
    [Google Scholar]
  56. Stüwe, K. & Hintermüller, M. (2000) Topography and isotherms revisited: the influence of laterally migrating drainage divides. Earth Planet. Sci. Lett., 184, 287–303.
    [Google Scholar]
  57. Stüwe, K., White, L. & Brown, R. (1994) The influence of eroding topography on steady‐state isotherms: application to fission track analysis. Earth Planet. Sci. Lett., 124, 63–74.
    [Google Scholar]
  58. Vannay, J.C. & Hodges, K.V. (1996) Tectonometamorphic evolution of the Himalayan metamorphic core between Annapurna and Dhaulagiri, central Nepal. J. Metamorphic Geol., 14, 635–656.
    [Google Scholar]
  59. Whipple, K.E., Kirby, E. & Brocklehurst, S.H. (1999) Geomorphic limits to climate‐induced increases in topographic relief. Nature, 401, 39–43.
    [Google Scholar]
  60. White, N.M., Pringle, M., Garzanti, E., Bickle, M., Najman, Y., Chapman, H. & Friend, P. (2002) Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet. Sci. Lett., 195, 29–44.
    [Google Scholar]
  61. Willett, S.D. (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res., 104, 28,957–28,982.
    [Google Scholar]
  62. Willett, S.D. & Brandon, M.T. (2002) On steady states in mountain belts. Geology, 30, 175–178.
    [Google Scholar]
  63. Willett, S.D., Slingerland, R. & Hovius, N. (2001) Uplift, shortening, and steady state topography in active mountain belts. Am. J. Sci., 301, 455–485.
    [Google Scholar]
  64. Yamanaka, H. & Iwata, S. (1982) River terraces along the middle Kali Gandaki and Marsyandi Khola, central Nepal. J. Nepal Geol. Soc., 2, 95–112.
    [Google Scholar]
  65. Zhang, P., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2003.00211.x
Loading
/content/journals/10.1046/j.1365-2117.2003.00211.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error