1887
Volume 15, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Deciphering the evolution of mountain belts requires information on the temporal history of both topographic growth and erosion. The exhumation rate of a mountain range undergoing shortening is related to the erodability of the uplifting range as well as the efficiency of erosion, which partly depends on the available precipitation. Young, rapidly deposited sediments have low thermal conductivity and are readily eroded, in contrast to underlying resistant basement rocks that have a higher thermal conductivity. Apatite fission‐track thermochronology can quantify cooling; thermal models constrain the relationship between this cooling and exhumation. By utilizing geological relations for a datum, we can examine the evolution of rock uplift, surface uplift and exhumation. In the northern Sierras Pampeanas of Argentina, a young sedimentary basin that overlay resistant crystalline basement prior to rapid exhumation provides an ideal setting to examine the effect of contrasting thermal and erosional regimes. There, tectonically active reverse‐fault‐bounded blocks partly preserve a basement peneplain at elevations in excess of 4500 m. Prior to exhumation, the two study areas were covered by 1000 and 1600 m of recently deposited sediments; this sequence begins with shallow marine deposits immediately overlying the regional erosion surface. Apatite fission‐track data were obtained from vertical transects in the Calchaquíes and Aconquija ranges. At Cumbres Calchaquíes, erosion leading to the development of the peneplain commenced in the Cretaceous, probably as a result of rift‐shoulder uplift. In contrast, Sierra Aconquija cooled rapidly between 5.5 and 4.5 Myr. At the onset of this rapid exhumation, the sediment was quickly removed, causing fast cooling, but relatively slow rates of surface uplift. Syntectonic conglomerates were produced when faulting exposed resistant bedrock; this change in rock erodability led to enhanced surface uplift rates, but decreased exhumation rates. The creation of an orographic barrier after the range had attained sufficient elevation further decreased exhumation rates and increased surface uplift rates. Differences in the magnitude of exhumation at the two transects are related to both differences in the thickness of the sedimentary basin prior to exhumation and differences in the effective precipitation due to an orographic barrier in the foreland and hence differences in the magnitude of headward erosion.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2117.2003.00214.x
2003-10-08
2020-04-04
Loading full text...

Full text loading...

References

  1. Alonso, R.N. (1992) Estratigrafía del Cenozoico de la cuenca de Pastos Grandes (Puna Salteña) con énfasis en la Formación Sijes y sus boratos. Rev. Asoc. Geol. Argent., 0, 189–199.
    [Google Scholar]
  2. Anzótegui, L.M. (1998) Hojas de angiospermas de la Formacíon Palo Pintado, Mioceno Superior, Salta, Argentina. Parte I: Anacardiaceae, Lauraceae y Moraceae. Ameghiniana (Rev. Assoc. Paleontol. Argent.), 35, 25–32.
    [Google Scholar]
  3. Bianchi, A.R. & Yañez, C.E. (1992) Las precipitaciones en el noroeste Argentino. Instituto Nacional de Tecnologia Agropecuaria, Estacion Experimental Agropecuaria Salta.
    [Google Scholar]
  4. Blackwell, D.D. & Steele, J.L. (1988) Thermal conductivity of sedimentary rocks: measurement and significance. In: Thermal History of Sedimentary Basins – Methods and Case Histories (Ed. by N.D.Naeser & T.H.McCulloh ), pp. 13–36. Springer, New York.
    [Google Scholar]
  5. Bossi, G.E. & Palma, R.M. (1982) Reconsideración de la estratigrafía del Valle de Santa Maria, Provincia de Catarmarca, Argentina. In: Quinto Congresso Lationoamericano de Geología, pp. 155–172. Argentina.
    [Google Scholar]
  6. Bossi, G.E., Georgieff, S.M., Gavriloff, I.J.C., Ibáñez, L.M. & Muruaga, C.M. (2001) Cenozoic evolution of the intramontane Santa María basin, Pampean Ranges, northwestern Argentina. J. South Am. Earth Sci., 14, 725–734.
    [Google Scholar]
  7. Bossi, G.E., Muruaga, C.M. & Gavriloff, I.J.C. (1999) Ciclo Andino. In: Geología del Noroeste Argentino (Ed. by Bonorino, G.González , R.Omarini & J.Viramonte ), pp. 329–360. Associación Geólogica Argentina, Salta.
    [Google Scholar]
  8. Braun, J. (2002) Quantifying the effect of recent relief changes on age–elevation relationships. Earth Planet. Sci. Lett., 200, 331–343.
    [Google Scholar]
  9. Brown, R.W. & Summerfield, M.A. (1997) Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surf. Proces. Landforms, 22, 239–248.
    [Google Scholar]
  10. Butler, R., Marshall, L., Drake, R. & Curtis, G. (1984) Magnetic polarity stratigraphy and K/Ar dating of Late Miocene and Early Pliocene continental deposits, Catamarca Province, NW Argentina. J. Geol., 92, 623–636.
    [Google Scholar]
  11. Caelles, J.C., Clark, A.H., Farrar, E., McBride, S.L. & Quirt, S. (1971) Potassium–Argon ages of porphyry copper deposits and associated rocks in the Farallón Negro‐Capillitas district, Catamarca, Argentina. Econ. Geol., 66, 961–964.
    [Google Scholar]
  12. Carlson, W.D., Donelick, R.A. & Ketcham, R.A. (1999) Variability of apatite fission‐track annealing kinetics: I. Experimental results. Am. Mineral., 84, 1213–1223.
    [Google Scholar]
  13. Coughlin, T.J., O'Sullivan, P.B., Kohn, B. & Holcombe, R.J. (1998) Apatite fission‐track thermochronology of the Sierras Pampeanas, central western Argentina: implications for the mechanism of plateau uplift in the Andes. Geology, 26, 999–1002.
    [Google Scholar]
  14. Cristallini, E.O., Comínguez, A., Ramos, V.A. & Mercerat, E.D. (in press) Basement double‐wedge thrusting in western Sierras Pampeanas of Argentina (27°S): constraints from deep seismic reflection. In: Thrust Tectonics and Petroleum Systems (Ed. by K.McClay ) AAPG.
    [Google Scholar]
  15. Donelick, R.A. & Miller, D.S. (1991) Enhanced TINT fission‐track densities in low spontaneous track density apatites using 252Cf‐derived fission fragment tracks: a model and experimental observations. Nucl. Tracks Radiat. Meas., 18, 301–307.
    [Google Scholar]
  16. Donelick, R.A., Ketcham, R.A. & Carlson, W.D. (1999) Variability of apatite fission‐track annealing kinetics: II. Crystallographic orientation effects. Am. Mineral., 84, 1224–1234.
    [Google Scholar]
  17. Dumitru, T.A. (1993) A new computer automated microscope stage system for fission track analysis. Nucl. Tracks, 21, 575–580.
    [Google Scholar]
  18. England, P.C. & Molnar, P. (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18, 1173–1177.
    [Google Scholar]
  19. Flemings, P.B. & Nelson, S.N. (1991) Paleogeographic evolution of the Latest Cretaceous and Paleocene Wind River basin. The Mountain Geol., 28, 37–52.
    [Google Scholar]
  20. Galbraith, R.F. (1981) On statistical models for fission track counts. Math. Geol., 13, 471–478.
    [Google Scholar]
  21. Gallagher, K. (1995) Evolving temperature histories from apatite fission‐track data. Earth Planet. Sci. Lett., 136, 421–435.
    [Google Scholar]
  22. Gavriloff, I.J.C. & Bossi, G.E. (1992) Revisión general, analisis facial, correlación y edad de las formaciones San José y Río Salí (Mioceno medio), provincias de Catamarca, Tucumán y Salta, República Argentina. Acta Geol. Lilloana, XVII, 5–43.
    [Google Scholar]
  23. Georgieff, S.M. (1998) Análisis paleoambiental de la porción inferior de la Formación Andalhuala en la zona central del valle de Santa María. PhD Thesis. Universidad Nacional de Tucumán, Argentina, 260pp.
  24. González Bonorino, F. (1951) Descripción geológica de la Hoja 12e, Aconquija, Provincia de Tucuman y Catamarca. Servicio Nacional Minero Geológico, Buenos Aires.
  25. González, O.E. (2000) Hoja Geológica 2766‐II San Miguel de Tucumán, 1:250 000. Secretaría de Energía y Minería, Buenos Aires, pp. 124.
    [Google Scholar]
  26. González, O.E., Barber, E.L.G., Aceñolaza, F.G., Toselli, A. & Durand, F. (1994) Mapa Geológico de la Provincia de Tucumán. Servicio Geológico Minero Argentino, Buenos Aires.
    [Google Scholar]
  27. Green, P.F. (1981) A new look at statistics in fission‐track dating. Nucl. Tracks, 5, 77–86.
    [Google Scholar]
  28. Green, P.F. (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planet. Sci. Lett., 89, 335–352.
    [Google Scholar]
  29. Green, P.F., Duddy, I.R., Gleadow, A.J.W. & Lovering, J.F. (1989) Apatite fission‐track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Thermal History of Sedimentary Basins: Methods and Case Histories (Ed. by N.D.Naeser & T.H.McCulloh ), pp. 181–195. Springer‐Verlag, New York.
    [Google Scholar]
  30. Green, P.F., Duddy, I.R., Laslett, G.M., Hegarty, K.A., Gleadow, A.J.W. & Lovering, J.F. (1989) Thermal annealing of fission tracks in apatite, 4, Quantitative modelling techniques and extension to geological timescales. Chem. Geol. (Isotope Geosci. Sec.), 79, 155–182.
    [Google Scholar]
  31. Grier, M.E., Salfity, J.A. & Allmendinger, R.W. (1991) Andean Reactivation of the Cretaceous Salta rift, northwestern Argentina. J. South Am. Earth Sci., 4, 351–372.
    [Google Scholar]
  32. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  33. Haselton, K., Hilley, G. & Strecker, M.R. (2002) Average Pleistocene climatic patterns in the southern Central Andes: controls on mountain glaciation and paleoclimate implications. J. Geol., 110, 211–226.
    [Google Scholar]
  34. Hay, W.W., Soeding, E., DeConto, R.M. & Wold, C.N. (2002) The Late Cenozoic uplift – climate change paradox. Int. J. Earth Sci., 91, 746–774.
    [Google Scholar]
  35. Hermanns, R.L. & Strecker, M.R. (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina. Geol. Soc. Am. Bull., 111, 934–948.
    [Google Scholar]
  36. Hurford, A.J. & Green, P.F. (1983) The zeta age calibration of fission‐track dating. Chem. Geol., 41, 285–317.
    [Google Scholar]
  37. Ibañez, L.M. (2001) Análisis paleoambiental de la Formación Chiquimil en el valle de Santa María, Catamarca, Tucumán y Salta. PhD Thesis. Universidad Nacional de Tucumán, Argentina, 201pp.
  38. Jordan, T.E. & Allmendinger, R.W. (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am. J. Sci., 286, 737–764.
    [Google Scholar]
  39. Jordan, T.E., Zeitler, P., Ramos, V. & Gleadow, A.J.W. (1989) Thermochronometric data on the development of the basement peneplain Sierras Pampeanas, Argentina. J. South Am. Earth Sci., 2, 207–222.
    [Google Scholar]
  40. Ketcham, R.A., Donelick, R.A. & Carlson, W.D. (1999) Variability of apatite fission‐track annealing kinetics: III. Extrapolation to geological time scales. Am. Mineral., 84, 1235–1255.
    [Google Scholar]
  41. Ketcham, R.A., Donelick, R.A. & Donelick, M.B. (2000) AFTSolve: a program for multi‐kinetic modeling of apatite fission‐track data. Geol. Mater. Res., 2, 1–32.
    [Google Scholar]
  42. Kleinert, K. & Strecker, M.R. (2001) Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late Neogene Santa María basin, northwestern Argentina. GSA Bull., 113, 728–742.
    [Google Scholar]
  43. Latorre, C., Quade, J. & McIntosh, W.C. (1997) The expansion of C‐4 grasses and global change in the late Miocene: stable isotope evidence from the Americas. Earth Planet. Sci. Lett., 146, 83–96.
    [Google Scholar]
  44. Mancktelow, N.S. & Grasemann, B. (1997) Time‐dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics, 270, 167–195.
    [Google Scholar]
  45. Martínez, L.d.V.
    (Ed.) (1995) Mapa Geológico de la Provincia de Catamarca. Servicio Geológico Minero Argentino, Buenos Aires.
    [Google Scholar]
  46. Naeser, N.D., Zeitler, P.K., Naeser, C.W. & Cervany, P.F. (1987) Provenance studies by fission‐track dating of zircon – etching and counting procedures. Nucl. Tracks Radiat. Meas., 13, 121–126.
    [Google Scholar]
  47. Ramos, V.A. & Alonso, R.N. (1995) El Mar Paranense en la provincia de Jujuy. Rev. Geol. Jujuy, 10, 73–80.
    [Google Scholar]
  48. Royden, L. (1996) Coupling and decoupling of crust and mantle in convergent orogens: implications for strain partitioning in the crust. J. Geophys. Res., 101, 17679–17705.
    [Google Scholar]
  49. Ruíz Huidobro, O.J. (1972) Descripción geológica de la Hoja 11e, Santa Maria, Provincia de Catamarca y Tucumán. Servicio Nacional Minero Geológico, Buenos Aires.
    [Google Scholar]
  50. Safran, E.B. (2003) Geomorphic interpretation of low‐temperature thermochronologic data: insights from two‐dimensional thermal modeling. J. Geophys. Res., 108, 2189. doi:10.1029/2002JB001870.
    [Google Scholar]
  51. Salfity, J.A. & Monaldi, C.R. (1998) Mapa Geológico de la Provincia de Salta. Servicio Geológico Minero Argentino, Buenos Aires.
    [Google Scholar]
  52. Salfity, J.A., Gorustovich, S.A., González, R.E., Monaldi, C.R., Marquillas, R.A., Galli, C.I. & Alonso, R.N. (1996) Las cuencas Terciarias Posincaicas de los Andes Centrales de la Argentina. In: XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, pp. 453–471. Buenos Aires.
    [Google Scholar]
  53. Sasso, A.M. & Clark, A.H. (1998) The Farallón Negro Group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu–Au metallogeny in the Andean back‐arc. SEG Newslett., 34, 6–18.
    [Google Scholar]
  54. Schlunegger, F., Melzer, J. & Tucker, G.E. (2001) Climate, exposed source‐rock lithologies, crustal uplift and surface erosion: a theoretical analysis calibrated with data from the Alps/North Alpine Foreland Basin system. Int. J. Earth Sci., 90, 484–499.
    [Google Scholar]
  55. Sobel, E.R., Hilley, G.E. & Strecker, M.R. (2003) Formation of internally‐drained contractional basins by aridity‐limited bedrock incision. J. Geophys. Res. – Solid Earth, 108, 2344, doi: 10.1029/2002/JB001883.
    [Google Scholar]
  56. Springer, M. & Förster, A. (1998) Heat‐flow density across the Central Andean subduction zone. Tectonophysics, 291, 123–139.
    [Google Scholar]
  57. Starck, D. & Vergani, G. (1996) Desarollo tecto‐sedimentario del Cenozoico en el sur de la Provincia de Salta – Argentina. In: XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, pp. 433–452. Buenos Aires.
    [Google Scholar]
  58. Stock, J.D. & Montgomery, D.R. (1999) Geologic constraints on bedrock river incision using the stream power law. J. Geophys. Res. – Solid Earth, 104, 4983–4993.
    [Google Scholar]
  59. Strecker, M.R. (1987) Late Cenozoic landscape development, the Santa María Valley, Northwest Argentina. PhD Thesis, Cornell University, 262pp.
  60. Strecker, M.R., Bloom, A.L., Malizzia, D., Cerveny, P., Bossi, G., Bensel, C. & Villaneuva García, A. (1987) Nuevo datos neotectónicos sobre Las Sierras Pampeanas septentrionales (26°–27°S), República Argentina. In: Decimo Congreso Geológico Argentino, pp. 231–234. San Miguel de Tucumán.
    [Google Scholar]
  61. Strecker, M.R., Cerveny, P., Bloom, A.L. & Malizzia, D. (1989) Late tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°–28°S), Argentina. Tectonics, 80, 517–534.
    [Google Scholar]
  62. Stüwe, K. & Hintermüller, M. (2000) Topography and isotherms revisited: the influence of laterally migrating drainage divides. Earth Planet. Sci. Lett., 184, 287–303.
    [Google Scholar]
  63. Tagami, T., Carter, A. & Hurford, A.J. (1996) Natural long‐term annealing of the zircon fission‐track system in Vienna Basin deep borehole samples; constraints upon the partial annealing zone and closure temperature. Chem. Geol., 130, 147–157.
    [Google Scholar]
  64. Trauth, M.H., Alonso, R.A., Haselton, K.R., Hermanns, R.L. & Strecker, M.R. (2000) Climate change and mass movements in the NW Argentine Andes. Earth Planet. Sci. Lett., 179, 243–256.
    [Google Scholar]
  65. Villaneuva García, A. & Ovejero, R. (1998) Procedencia de las arenitas de la formaciones San José y Las Arcas (Neógeno) en la localidad de Entre Ríos, Catamarca. Rev. Assoc. Geol. Argen., 53, 158–166.
    [Google Scholar]
  66. Wagner, G. & Van der Haute, P. (1992) Fission‐Track Dating. Kluwer Academic Publishers, Dordrecht, 285pp.
    [Google Scholar]
  67. Whipple, K.X. & Tucker, G.E. (1999) Dynamics of the stream‐power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res., 104, 17661–17674.
    [Google Scholar]
  68. Whipple, K.X., Kirby, E. & Brocklehurst, S.H. (1999) Geomorphic limits to climate‐induced increases in topographic relief. Nature, 401, 39–43.
    [Google Scholar]
  69. Willett, S.D. (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res., 104, 28957–28981.
    [Google Scholar]
  70. WMO
    WMO (1975) Climatic Atlas of South America. WMO, Geneva, 28 pp.
    [Google Scholar]
  71. Zhang, P., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2117.2003.00214.x
Loading
/content/journals/10.1046/j.1365-2117.2003.00214.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error