1887
Volume 48 Number 3
  • E-ISSN: 1365-2478

Abstract

It is important to have detailed knowledge of the electrical properties of the earth's crust in order to recognize geological structures and to understand tectonic processes. In the area surrounding the German Continental Deep Drilling Project (KTB), we have used DC dipole–dipole soundings to investigate the electrical conductivity distribution down to a depth of several kilometres. We have adapted the electrical resistivity tomography (ERT) technique, a well‐established near‐surface method, to large‐scale experiments. Independent transmitting and receiving units were used to realize the concept of simultaneous multichannel registration of the scalar electrical potential at 44 dipoles. The measured data yielded apparent resistivities which were inverted to a 2D resistivity model ranging from the surface down to a depth of 4 km. Two highly conductive structures with steep inclination were detected. They are expected to be major fault zones embedded in a metamorphic body. The rather low resistivity ( < 10 Ωm) can be explained by the existence of graphitic minerals and/or electrolytic fluids.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2478.2000.00196.x
2001-12-24
2024-04-25
Loading full text...

Full text loading...

References

  1. AlfanoL.1974. A modified geoelectrical procedure using polar‐dipole arrays — an example of application to deep exploration. Geophysical Prospecting22, 510525.
    [Google Scholar]
  2. AlfanoL.1980. Dipole–dipole deep geoelectrical soundings over geological structures. Geophysical Prospecting28, 283296.
    [Google Scholar]
  3. BarberD.C. & BrownH.B.1984. Applied potential tomography. Journal of Physical Engineering and Scientific Instruments17, 723733.
    [Google Scholar]
  4. BosumW., CastenU., FiedbergF.C., HeydeI., SoffelH.C.1997. Three‐dimensional interpretation of the KTB gravity and magnetic anomalies. Journal of Geophysical Research102, 18 30718 321.
    [Google Scholar]
  5. BrunnerI., FriedelS., JacobsF., DanckwardtE.1999. Investigation of a Tertiary maar structure using three‐dimensional resistivity imaging. Geophysical Journal International136, 771780.
    [Google Scholar]
  6. ButtkusB.1991. Spektralanalyse und Filtertheorie. Springer‐Verlag, Inc.
  7. DailyW. & RamirezA.1992. Electrical resistivity tomography of vadose water movement. Water Resources Research28, 14291442.
    [Google Scholar]
  8. DeyA. & MorrisonH.F.1979. Resistivity modelling for arbitrarily shaped two‐dimensional structures. Geophysical Prospecting27, 106136.
    [Google Scholar]
  9. EiselM.1995. Interpretation magnetotellurischer Messungen im Umfeld der Kontinentalen Tiefbohrung unter besonderer Berücksichtigung lateral anisotroper Leitfähigkeitsstrukturen. Scientific Technical Report STR95/13. GeoForschungszentrum Potsdam, Germany.
  10. ELEKTB Group
    ELEKTB Group1997. KTB and the electrical conductivity of the crust. Journal of Geophysical Research102, 18 28918 305.
    [Google Scholar]
  11. EmmermannR. & LauterjungJ.1997. The German Continental Deep Drilling Program KTB: overview and major results. Journal of Geophysical Research102, 18 17918 201.
    [Google Scholar]
  12. FriedelS., JacobsF., FlechsigCh., ReissmannC., BrunnerI.1998. Large‐scale DC resistivity imaging at Merapi volcano. In: Mitteilungen der Deutschen Geophysikalischen Gesellschaft — Sonderband III/98 (eds J. Zschau and M. Westerhaus), pp. 3540.
  13. GiudiciM. & AlfanoL.1997. Comparison between geoelectric and electromagnetic sounding responses in volcanic areas. Annali di GeofisicaXL, 287295.
    [Google Scholar]
  14. GiudiciM. & AlfanoL.1998. Magnetotelluric and DC geoelectrical soundings in the Po plain (Vento region). Annali di Geofisica41, 289298.
    [Google Scholar]
  15. HirschmannG. & LappM.1995. Evaluation of the structural geology of the KTB Hautbohrung (KTB‐Oberpfalz HB). KTB Report 94‐1, pp. 285308. Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany.
  16. JustA., KüpperT., KürschnerD., JacobsF.1995. Electrical resistivity tomography on model bodies and drill cores of the KTB. In: Contributions to the 8th Annual KTB Colloquium (eds R. Emmermann, J. Lauterjung and T. Umsonst), pp. 161164. Institut für Geowissenschaften und Lithosphärenforschung, Universität Giessen, Germany.
  17. KellerG.V.1966. Dipole method for deep resistivity studies. Geophysics31, 10881104.
    [Google Scholar]
  18. LokeM.H. & BarkerR.D.1996. Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting44, 499523.
    [Google Scholar]
  19. MonteiroS.F.A., AndradeA.A.R., MendesV.L.A.1997. Study of the caves geothermal field using 3D resistivity modeling. Journal of Applied Geophysics37, 85102.
    [Google Scholar]
  20. O'brienP.J., DuysterJ., GrauertB., SchreyerW., StöckhertB., WeberK.1997. Crustal evolution of the KTB drill site: from oldest relicts to the late Hercynian granites. Journal of Geophysical Research102, 18 20318 220.
    [Google Scholar]
  21. PérezF. & GómezT.1997. Dipole–dipole resistivity imaging of the Ahuachapan–Chipilapa geothermal field, El Salvador. Geothermics26, 657680.
    [Google Scholar]
  22. RauenA.1991. Untersuchungen des komplexen elektrischen Widerstandes insbesondere dessen Anisotropie und Frequenzabhänigkeit von Proben des Kontinentalen Tiefbohrprogramms der Bundesrepublik Deutschland (KTB). PhD thesis, Fakultät für Geowissenschaften, Universität München.
  23. RiskG.F., CaldwellT.G., BibbyH.M.1995. Deep resistivity surveys in the Waiotapu–Waikite–Reporoa region, New Zealand. Geothermics23, 423443.
    [Google Scholar]
  24. SchönJ.H.1996. Physical Properties of Rocks:Fundamentals and Principles of Petrophysics. Redwood Books, Trowbridge, UK.
  25. SchwarzH.R.1991. Methode der Finiten Elemente. B.G. Teubner‐Verlag, Stuttgart, Germany.
  26. SpitzerK.1998. The three‐dimensional DC sensitivity for surface and subsurface sources. Geophysical Journal International134, 736746.
    [Google Scholar]
  27. StettnerG.1992. Geologie im Umfeld der Kontinentalen Tiefbohrung Oberpfalz‐Einführung und Exkursionen. Bayrisches Geologisches Landesamt, Munich.
  28. StollJ., BigalkeJ., GrabnerE.1995. Electrochemical modelling of selfpotential anomalies. Surveys in Geophysics16, 107120.
    [Google Scholar]
  29. StrackK.M.1992. Exploration with Deep Transient Electromagnetics. Elsevier Science Publishing Co.
  30. StrackK.M., HansteinT., EilenzH.N.1989. LOTEM data processing for areas with high cultural noise levels. Physics of the Earth and Planetary Interiors53, 261269.
    [Google Scholar]
  31. WellerA., GruhneM., SeichterM., BörnerF.D.1996. Monitoring hydraulic experiments by complex conductivity tomography. European Journal of Environmental and Engineering Geophysics1, 209228.
    [Google Scholar]
  32. XuB. & NoelM.1993. On the completeness of data sets with multielectrode systems for electrical resistivity survey. Geophysical Prospecting41, 791801.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2478.2000.00196.x
Loading
/content/journals/10.1046/j.1365-2478.2000.00196.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error