1887
Volume 49, Issue 1
  • E-ISSN: 1365-2478

Abstract

Following the probability tomography principles previously introduced to image the sources of electric and electromagnetic anomalies, we demonstrate that a similar approach can be used to analyse gravity data. First, we give a coherent derivation of the Bouguer anomaly concept as a Newtonian‐type integral for an arbitrary mass distribution buried below a non‐flat topography. A discretized solution of this integral is then derived as a sum of elementary contributions, which are cross‐correlated with the gravity data function in the expression for the total power associated with the Bouguer anomaly. To image the mass distribution underground we introduce a mass contrast occurrence probability function using the cross‐correlation product of the observed Bouguer anomaly and the synthetic field due to an elementary mass contrast source. The tomographic procedure consists of scanning the subsurface with the elementary source and calculating the occurrence probability function at the nodes of a regular grid. The complete set of grid values is used to highlight the zones of highest probability of mass contrast concentrations. Some synthetic and field examples demonstrate the reliability and resolution of the new gravity tomographic approach.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2478.2001.00234.x
2001-12-21
2024-04-19
Loading full text...

Full text loading...

References

  1. CassanoE. & La TorreP.1987. Geophysics. In: Phlegrean Fields: Quaderni della Ricerca Scientific, Vol. 114 (eds M.Rosi and A.Sbrana ), pp. 103–131. Consiglio Nazionale delle Ricerche.
    [Google Scholar]
  2. Di MaioR., PatellaD., PetrilloZ., SiniscalchiA., CecereG. & De MartinoP.2000. Application of electric and electromagnetic methods to the definition of the Campi Flegrei caldera (Italy). Annali di Geofisica43, 375–390 .
    [Google Scholar]
  3. ErvinC.P.1977. Short note on the theory of the Bouguer anomaly. Geophysics42, 1468.
    [Google Scholar]
  4. GnedenkoB.V.1979.Kurs Teorii Verojatnostej.Mir, Moscow. Published in Italian as Teoria della Probabilità. Editori Riuniti, Rome.
    [Google Scholar]
  5. HendersonR.G. & CordellL.1971. Reduction of unevenly spaced potential field data to a horizontal plane by means of a finite harmonic series. Geophysics36, 856–866.
    [Google Scholar]
  6. IanasM. & SavaC.S.1975. A preliminary processing of the Bouguer anomaly in areas of very complicated relief. Geophysical Prospecting23, 93–103.
    [Google Scholar]
  7. LaFehrT.R.1991. Standardization in gravity reduction. Geophysics56, 1170–1178.
    [Google Scholar]
  8. MaurielloP., MonnaD. & PatellaD.1998. 3D geoelectric tomography and archaeological applications. Geophysical Prospecting46, 543–570.
    [Google Scholar]
  9. MaurielloP. & PatellaD.1999a. Resistivity anomaly imaging by probability tomography. Geophysical Prospecting47, 411–429.DOI: 10.1046/j.1365-2478.1999.00137.x
    [Google Scholar]
  10. MaurielloP. & PatellaD.1999b. Principles of probability tomography for natural‐source electromagnetic induction fields. Geophysics64, 1403–1417.
    [Google Scholar]
  11. NaudyH. & NeumannR.1965. Sur la définition de l'anomalie de Bouguer et ses conséquences pratiques. Geophysical Prospecting13, 1–11.
    [Google Scholar]
  12. NettletonL.L.1976.Gravity and Magnetics in Oil Prospecting. McGraw‐Hill Book Co.
    [Google Scholar]
  13. OrsiG., De VitaS. & Di VitoM.1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. Journal of Volcanology and Geothermal Research74, 179–214.DOI: 10.1016/s0377-0273(96)00063-7
    [Google Scholar]
  14. ParasnisD.S.1997.Principles of Applied Geophysics, 5th edn. Chapman & Hall, London.
    [Google Scholar]
  15. PatellaD.1988. Tutorial: an unambiguous derivation of the Bouguer gravity anomaly. Bollettino di Geofisica Teorica ed Applicata30, 345–352.
    [Google Scholar]
  16. PatellaD.1997a. Introduction to ground surface self‐potential tomography. Geophysical Prospecting45, 653–681.
    [Google Scholar]
  17. PatellaD.1997b. Self‐potential global tomography including topographic effects. Geophysical Prospecting45, 843–863.
    [Google Scholar]
  18. PoincaréJ.H.1899.Théorie du Potential Newtonien. Paris.
  19. RosiM. & SbranaA., eds. 1987. Introduction, geological setting of the area, stratigraphy, description of mapped products, petrography, tectonics. In: Phlegrean Fields: Quaderni della Ricerca Scientifica, Vol. 114, pp. 9–93. Consiglio Nazionale delle Ricerche.
    [Google Scholar]
  20. SchoefflerJ.1975.Gravimétrie Appliquée. Editions Technip, Paris.
    [Google Scholar]
  21. SchwablF.1992.Quantum Mechanics. Springer‐Verlag, Inc.
    [Google Scholar]
  22. SmirnovV.I.1977.Kurs Vysšej Matematiki, 2. Mir, Moscow. Published in Italian as Corso di Matematica Superiore, 2. Editori Riuniti, Rome.
    [Google Scholar]
  23. TsuboiC.1965. Calculations of Bouguer anomalies with due regard to the anomaly in the vertical gradient. Proceedings of the Japanese Academy of Science41, 386–391.
    [Google Scholar]
  24. XiaJ., SprowlD.R. & Adkins‐HeljesonD.1993. Correction of topographic distortions in potential field data: a fast and accurate approach. Geophysics58, 515–523.
    [Google Scholar]
  25. ZidarovD.1990.Inverse Gravimetric Problem in Geoprospecting and Geodesy. Developments in Solid Earth Geophysics 19. Elsevier, Amsterdam.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2478.2001.00234.x
Loading
/content/journals/10.1046/j.1365-2478.2001.00234.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error