1887
Volume 49 Number 5
  • E-ISSN: 1365-2478

Abstract

We present a numerical method of simulating seismic wave propagation on unstructured 2D grids. The algorithm is based on the velocity–stress formulation of the elastic wave equation and therefore uses a staggered grid approach. Unlike finite‐element or spectral‐element methods, which can also handle flexible unstructured grids, we use explicit differential operators for the calculation of spatial derivatives in each time step. As shown in previous work, three types of these operators are used, and their particular performance is analysed and compared with standard explicit finite‐difference operators on regular quadratic and hexagonal grids. Our investigations are especially focused on the influence of grid irregularity, sampling rate (i.e. gridpoints per wavelength) and numerical anisotropy on the accuracy of numerical seismograms. The results obtained from the various methods are therefore compared with analytical solutions. The algorithm is then applied to a number of models that are difficult to handle using (quasi‐)regular grid methods. Such alternative techniques may be useful in modelling the full wavefield of bodies with complex geometries (e.g. cylindrical bore‐hole samples, 2D earth models) and, because of their local character, they are well suited for parallelization.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2478.2001.00276.x
2008-07-07
2024-04-25
Loading full text...

Full text loading...

References

  1. AkiK. & RichardsP.G.1980. Quantitative Seismology, Theory and Methods . W.H. Freeman & Co.
  2. BambergerA., ChaventG., LaillyP.1980. Etude de schémas numériques pour les équations de l'élastodynamique linéaire. INRIA, Rapports de Recherche41.
    [Google Scholar]
  3. CarcioneJ.M., KosloffD., KosloffR.1988. Wave propagation simulation in a linear viscoelastic medium. Geophysical Journal of the Royal Astronomical Society95, 597–611.
    [Google Scholar]
  4. CerjanC., KosloffD., KosloffR., ReshefM.1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics50, 705–708.
    [Google Scholar]
  5. CoutantJ., VirieuxJ., ZolloA.1995. Numerical source implementation in a 2D finite difference scheme for wave propagation. Bulletin of the Seismological Society of America85, 1507–1512.
    [Google Scholar]
  6. DormyE. & TarantolaA.1995. Numerical simulation of elastic wave propagation using a finite volume method. Journal of Geophysical Research100, 2123–2133.
    [Google Scholar]
  7. FornbergB.1987. The pseudospectral method: Comparison with finite differences for the elastic wave equation. Geophysics52, 483–501.
    [Google Scholar]
  8. FornbergB.1988. The pseudospectral method: Accurate representation of interfaces in elastic wave calculations. Geophysics53, 625–637.
    [Google Scholar]
  9. FortuneS.1992. Voronoi diagrams and Delaunay tesselations. In: Computing in Euclidean Geometry (eds D.Z.Du and F.Hwang ). World Scientific, Singapore.
  10. HermelineF.1993. Two coupled particle finite‐volume methods using Delaunay‐Voronoi meshes for the approximation of Vlasov‐Poisson and Vlasov‐Maxwell equations. Journal of Computational Physics106, 1–18.DOI: 10.1006/jcph.1993.1086
    [Google Scholar]
  11. HughesT.1987. The Finite Element Method . Prentice‐Hall, Inc.
  12. IgelH., MoraP., RiolletB.1995. Anisotropic wave propagation through finite‐difference grids. Geophysics60, 1203–1216.
    [Google Scholar]
  13. KäserM., IgelH., SambridgeM., BraunJ.2001. A comparative study of explicit differential operators on arbitrary grids. Journal of Computational Acoustics, in press .
    [Google Scholar]
  14. KellyK.R., WardR.W., TreitelS., AlfordR.M.1976. Synthetic seismograms: a finite difference approach. Geophysics41, 2–27.
    [Google Scholar]
  15. KomatitschD. & TrompJ.1999. Introduction to the spectral element method for three‐dimensional seismic wave propagation. Geophysical Journal International139, 806–822.DOI: 10.1046/j.1365-246x.1999.00967.x
    [Google Scholar]
  16. KomatitschD. & VilotteJ.P.1998. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America88, 368–392.
    [Google Scholar]
  17. MadariagaR.1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America66, 639–666.
    [Google Scholar]
  18. MagnierS.A.1992. Différences finies sur des grilles minimales et étude géothermique du Rift d'Asal. PhD thesis, Institut de Physique du Globe de Paris.
  19. MagnierS.A., MoraP., TarantolaA.1994. Finite differences on minimal grids. Geophysics59, 1435–1443.
    [Google Scholar]
  20. MarfurtK.J.1984. Accuracy of finite‐difference and finite‐element modelling of the scalar and elastic wave equations. Geophysics49, 533–549.
    [Google Scholar]
  21. MoczoP.1989. Finite‐difference technique for SH waves in 2D media using irregular grids: application to the seismic response problem. Geophysical Journal International99, 312–329.
    [Google Scholar]
  22. PadovaniE., PrioloE., SerianiG.1994. Low and high order finite element method: experience in seismic modelling. Journal of Computational Acoustics2, 371–422.
    [Google Scholar]
  23. SambridgeM., BraunJ., McQueenH.1995. Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophysical Journal International122, 837–857.
    [Google Scholar]
  24. ShewchukJ.R.1996. Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. 1st Workshop on Applied Computational Geometry in Philadelphia, ACM, 124–133. (http://www.cs.cmu.edu/~quake/triangle.html)
  25. SibsonR.1980. A vector identity for the Dirichlet tessellation. Mathematical Proceedings of the Cambridge Philosophical Society87, 151–155.
    [Google Scholar]
  26. SmithW.D.1975. The application of finite‐element analysis to body wave propagation problems. Geophysical Journal of the Royal Astronomical Society42, 747–768.
    [Google Scholar]
  27. TessmerE., KosloffD., BehleA.1992. Elastic wave propagation simulation in the presence of surface topography. Geophysical Journal International108, 621–632.
    [Google Scholar]
  28. ThomasC., IgelH., WeberM., ScherbaumF.2000. Acoustic simulation of P‐wave propagation in a heterogeneous spherical earth: numerical method and application to precursor waves to PKPdf. Geophysical Journal International141, 307–320.DOI: 10.1046/j.1365-246x.2000.00079.x
    [Google Scholar]
  29. VirieuxJ.1986. P‐SV wave propagation in heterogeneous media: velocity‐stress finite‐difference method. Geophysics51, 889–901.
    [Google Scholar]
  30. ZhangJ.1997. Quadrangle‐grid velocity‐stress finite‐difference method for elastic‐wave‐propagation simulation. Geophysical Journal International131, 127–134.
    [Google Scholar]
  31. ZhangJ. & TielinL.1999. P‐SV‐wave propagation in heterogeneous media: grid method. Geophysical Journal International136, 431–438.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2478.2001.00276.x
Loading
/content/journals/10.1046/j.1365-2478.2001.00276.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error