1887
Volume 63 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Three‐component borehole magnetics provide important additional information compared to total field or horizontal and vertical measurements. These data can be used for several tasks such as the localization of ferromagnetic objects, the determination of apparent polar wander curves and the computation of the magnetization of rock units. However, the crucial point in three‐component borehole magnetics is the reorientation of the measured data from the tool's frame to the geographic reference frame North, East and Downwards. For this purpose, our tool, the Göttinger Borehole Magnetometer, comprises three orthogonally aligned fibre optic gyros along with three fluxgate sensors. With these sensors, the vector of the magnetic field along with the tool rotation can be recorded continuously during the measurement. Using the high–precision gyro data, we can compute the vector of the magnetic anomaly with respect to the Earth's reference frame. Based on the comparison of several logs measured in the Outokumpu Deep Drill Hole (OKU R2500, Finland), the repeatability of the magnetic field vector is 0.8° in azimuthal direction, 0.08° in inclination and 71 nT in magnitude.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12175
2014-10-15
2024-03-28
Loading full text...

Full text loading...

References

  1. BosumW. and ScottJ.H.1988. Interpretation of Magnetic Logs in Basalt, Hole 418A.. In: Salisbury, M.H. , ScottJ.H. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 102.
    [Google Scholar]
  2. CookR.L., NicholsonJ.W., SheppardM.C. and WestlakeW.1989. First real time measurement of downhole vibrations, forces, and pressure used to monitor directional drilling operations. In: Proc. SPE/IADC Drilling Conf. pp. 283–290.
  3. FiebergF.C., 1994. Messung mit einem neuen Drei‐Achs‐Bohrlochmagnetometer in der Kontinentalen Tiefbohrung (KTB); Datenkorrektur, Ergebnisse und Interpretation. Ph.D. thesis, Institut für Geophysik und Meteorologie, TU Braunschweig, Braunschweig.
  4. GaillotP., EinaudiF., StollJ., and LevenM., 2004. General‐purpose inclinometry modules in highly magnetized formations: are borehole wall microresistivity images properly oriented? In: Duncan, R. , Tarduno, J. , Davies, T. , SchollD. , (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 197. pp. 1–22, Web link: http://www‐odp.tamu.edu/publications/197_SR/VOLUME/CHAPTERS/005.PDF.
    [Google Scholar]
  5. GalletY. and CourtillotV.1989. Modeling magnetostratigraphy in a borehole. Geophysics75, 973–983.
    [Google Scholar]
  6. GlaßmeierK., RichterI., DiedrichA., MusmannG., AusterU., MotschmannU., BaloghA., CarrC., CupidoE., CoatesA., RotherM., SchwingenschuhK., SzegöK., and TsurutaniB.2007. RPC‐MAG The fluxgate magnetometer in the ROSETTA plasma consortium. Space Science Review128, 649–670.
    [Google Scholar]
  7. HattulaA. and PaarmaH.1981. Equipments used in Borehole Magnetometry at Rautaruukki Oy. In: Hjelt, S.E. , PhokinA.P. , (Eds.), Collection of articles of a joint project Working Group of Geology. Department of Geophysics, University of Oulo, Report No. 1, 51–59.
    [Google Scholar]
  8. KüglerH., 2004. Modell eines Saturationskernmagnetometers basierend auf hochgenauen Kalibriermessungen. Ph.D. thesis, Institut für Geophysik extraterrestrische Physik, TU Braunschweig, Braunschweig, http://opus.tu‐bs.de/opus/volltexte/2004/591.
  9. KuhnkeF. and MusmannG.1991. KTB high temperature triaxial magnetometer. Scientific Drilling2, 166–179.
    [Google Scholar]
  10. KukkonenI.T.
    (Ed.), 2011. Foreword, Introduction to the Outokumpu Deep Drilling Project 2003‐2010. Geological Survey of Finland, special Paper 51, 11–16.
    [Google Scholar]
  11. LelièvreP.G. and OldenburgD.W.2009. A 3D total magnetization inversion applicable when significant, complicated remanence is present. Geophysics74, L21–L30.
    [Google Scholar]
  12. LevantoA.1959. A three‐component magnetometer for small drill holes and its use in ore prospecting. Geoph. Prosp.7, 183–195.
    [Google Scholar]
  13. LevantoA.1963. On magnetic measurements in drill holes. Geoexploration1, 8–20.
    [Google Scholar]
  14. LevenM.1997. Entwicklung und Aufbau eines triaxialen Bohrlochmagnetometers für den Einsatz in tiefen Bohrungen zur Vertikalen Gradientensondierung. Ph.D. thesis, Institut für Nachrichtentechnik, Fakultät für Maschinenbau und Elektrotechnik, TU Braunschweig, Braunschweig.
  15. LiY. and OldenburgD.W.2000. Joint inversion of surface and three‐component borehole magnetic data. Geophysics65, 540–552.
    [Google Scholar]
  16. MuellerE., MorrisW., KilleenP. and BalchS.1997. Combined 3‐D Interpretation of Airborne, Surface, and Borehole Vector Magnetics at the McConnell Nickel Deposit. In: GubinsA.G. , (Ed.), Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration. pp. 657–666.
    [Google Scholar]
  17. SilvaJ.B.C. and HohmannG.W.1981. Interpretation of three‐component borehole magnetometer data. Geophysics45, 1721–1731.
    [Google Scholar]
  18. StevelingE., StollJ.B. and LevenM.2003. Quasi‐continuous depth profiles of rock magnetization from magnetic logs in the HSDP‐2 borehole, Island of Hawaii. Geochem. Geophs. Geosyst.4, 8708, doi:10.1029/2002GC000330.
    [Google Scholar]
  19. StevelingE., StollJ., and LevenM.2005. Paläomagnetismus in der Bohrung HSDP (Hilo/Hawaii). Abschlussbericht zu den Forschungsvorhaben STE 371/6‐2 und STE 371/6‐3 im Schwerpunktprogramm “International Continental Drilling Program (ICDP)/Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland (KTB)” (SPP1006).
  20. StollJ. and VirgilC.2009. Attitude algorithm utilised in mobile geophysical measuring systems. In: Protokoll über das 23. Schmucker‐Weidelt‐Kolloquium für Elektromagnetische Tiefenforschung.
    [Google Scholar]
  21. VirgilC.2012. Vorbereitung und Durchführung von dreikomponentigen Magnetfeldmessungen mit dem Göttinger Bohrloch Magnetometer. Ph.D. thesis, Institut für Geophysik extraterrestrische Physik, TU Braunschweig, Braunschweig, http://www.digibib.tu‐bs.de/?docid=00042924.
  22. VirgilC., HördtA., KleinT., KückJ., LevenM., and StevelingE.2010. High‐precision orientation of three‐component magnetic downhole logs. Scientific Drilling9, 37–40.
    [Google Scholar]
  23. VirgilC., HördtA., KückJ., LevenM., StevelingE., DietzeF., 2011. Three‐component magnetic logging in the Outokumpu Deep Drill Hole. In: Kukkonen, I. T. (Ed.), Outokumpu Deep Drilling Project 2003‐2010. Geological Survey of Finland, special Paper 51, 119–132.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12175
Loading
/content/journals/10.1111/1365-2478.12175
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Borehole geophysics; Data processing; Logging; Magnetics; Multicomponent

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error