1887
Volume 63, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Waveform inversion met severe challenge in retrieving long‐wavelength background structure. We have proposed to use envelope inversion to recover the large‐scale component of the model. Using the large‐scale background recovered by envelope inversion as new starting model, we can get much better result than the conventional full waveform inversion. By comparing the configurations of the misfit functional between the envelope inversion and the conventional waveform inversion, we show that envelope inversion can greatly reduce the local minimum problem. The combination of envelope inversion and waveform inversion can deliver more faithful and accurate final result with almost no extra computation cost compared to the conventional full waveform inversion. We also tested the noise resistance ability of envelope inversion to Gaussian noise and seismic interference noise. The results showed that envelope inversion is insensitive to Gaussian noise and, to a certain extent, insensitive to seismic interference noise. This indicates the robustness of this method and its potential use for noisy data.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12208
2014-12-23
2024-04-25
Loading full text...

Full text loading...

References

  1. AlmominA. and BiondiB.2012. Tomographic Full Waveform Inversion: Practical and Computationally Feasible Approach. 82nd Annual International Meeting, SEG, Expanded Abstracts, 1–5.
    [Google Scholar]
  2. BiondiB. and AlmominA.2012. Tomographic full waveform inversion (TFWI) by combining full waveform inversion with wave‐equation migration velocity analysis. 82nd Annual International Meeting, SEG, Expanded Abstracts, 1–5.
    [Google Scholar]
  3. BiondiB. and SavaP.1999. Wave‐equation migration velocity analysis. 69th Annual International Meeting, SEG, Expanded Abstracts, 1723–1726.
    [Google Scholar]
  4. BoschettiF., DentithM.C. and ListD.1996. Inversion of seismic refraction data using genetic algorithms. Geophysics61, 1715–1727.
    [Google Scholar]
  5. BrendersA.J. and PrattR.G.2007. Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model. Geophysical Journal International, 168, 133–151.
    [Google Scholar]
  6. BunksC., SaleckF.M., ZaleskiS. and ChaventG.1995. Multiscale seismic waveform Inversion. Geophysics60, 1457–1473.
    [Google Scholar]
  7. CraseE., PicaA., NobleM., McDonaldJ. and TarantolaA.1990. Robust elastic nonlinear waveform inversion: Application to real data. Geophysics55, 527–538.
    [Google Scholar]
  8. DinesK. and LytleR.1979. Computerized geophysical tomography. Proc. IEEE67, 1065–1072.
    [Google Scholar]
  9. JusticeJ., VassiliouA., SinghS., LogelJ., HansenP., HallB., HuttP. and SolankilJ.1989. Acoustic tomography for enhancing oil recovery. The Leading Edge8, 12–19.
    [Google Scholar]
  10. LaillyP.1983. The seismic inverse problem as a sequence of before stack migration. Proceeding of SIAM Phiadelphia Conference on Inverse Scattering: Theory and Applications (eds E.Robinson and A.Weglein ), pp. 206–220. Society for Industrial and Applied Mathematics.
    [Google Scholar]
  11. LiuJ., ChaurisH. and CalandraH.2011. The normalized integration method – an alternative to full waveform inversion? Near Sruface 2011–17th European Meeting of Environmental and Engineering Geophysics, B07.
    [Google Scholar]
  12. LiuZ. and BleisteinN.1995. Migration velocity analysis: Theory and an iterative algorithm. Geophysics. 60, 142–153.
    [Google Scholar]
  13. LuoY., and SchusterG.T.1991. Wave‐equation traveltime inversion. Geophysics56, 645–653.
    [Google Scholar]
  14. MallickS.1999. Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand. Geophysics64, 326–336.
    [Google Scholar]
  15. MaoJ., WuR. and WangB.2012. Multiscale full waveform inversion using GPU. 82nd Annual International Meeting, SEG, Expanded Abstracts. 1–7.
    [Google Scholar]
  16. MoraP.1987. Nonlinear two‐dimensional elastic inversion of multi‐offset seismic data. Geophysics52, 1211–1228.
    [Google Scholar]
  17. MoraP.1988. Elastic wave‐field inversion of reflection and transmission data. Geophysics53, 750–759.
    [Google Scholar]
  18. PadhiA., MukhopadhyayP., BlacicT., FortinW., HolbrookW.S. and MallickS.2010. Prestack waveform inversion for the water‐column velocity structure‐ the present state and the road ahead. 80th Annual International Meeting, SEG, Expanded Abstracts, 2845–2849.
    [Google Scholar]
  19. PaulssonetB., CookN. and McEvillyT.1985. Elastic wave velocities and attenuation in an underground repository of nuclear waste. Geophysics50, 551–570.
    [Google Scholar]
  20. PrattR.G.1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics64, 888–901.
    [Google Scholar]
  21. PrattR.G. and ShippR.M.1999. Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data. Geophysics64, 902–914.
    [Google Scholar]
  22. SavaP. and BiondiB.2004. Wave‐equation migration velocity analysis. I. Theory. Geophysical Prospecting. 52, 593–606.
    [Google Scholar]
  23. ShenP. and SymesW.2008. Automatic velocity analysis via shot profile migration. Geophysics73, VE49–VE59.
    [Google Scholar]
  24. ShinC. and ChaY.H.2008. Waveform inversion in the Laplace domain. Geophys. J. Int. 173, 922–931.
    [Google Scholar]
  25. ShinC. and ChaY.H.2009. Waveform inversion in the Laplace‐Fourier domain. Geophys. J. Int. 177, 1067–1079.
    [Google Scholar]
  26. TarantolaA.1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics49, 1259–1266.
    [Google Scholar]
  27. VirieuxJ. and OpertoS.2009. An overview of full‐waveform inversion in exploration geophysics. Geophysics74, WCC1–WCC26.
    [Google Scholar]
  28. WangH., SinghS.C., JianH. and CalandraH.2012. Integrated inversion of subsurface velocity structures using wave equation tomography and full waveform inversion. 82nd Annual International Meeting, SEG, Expanded Abstracts, 1–5.
    [Google Scholar]
  29. WarnerM., RatcliffeA., NangooT., MorganJ., UmplebyA., ShahN., VinjeV., Å teklI., GuaschL., WinC., ConroyG. and BertrandA.2013. Anisotropic 3D full‐waveform inversion. Geophysics78, R59–R80.
    [Google Scholar]
  30. WoodwardM.J.1992. Wave‐equation tomography. Geophysics57, 15–26.
    [Google Scholar]
  31. WuR.S., LuoJ. and WuB.2013. Ultra‐low‐frequency information in seismic data and envelope inversion. 83rd Annual International Meeting, SEG, Expanded Abstracts, 3078–3082.
    [Google Scholar]
  32. WuR.S., LuoJ. and WuB.2014. Seismic envelope inversion and modulation signal model. Geophysics79, WA13–WA24.
    [Google Scholar]
  33. XieX. and YangH.2008. The finite‐frequency sensitivity kernel for migration residual moveout and its applications in migration velocity analysis. Geophysics73, S241–S249.
    [Google Scholar]
  34. ZhouC., CaiW., LuoY., SchusterG.T. and HassanzadehS.1995. Acoustic wave‐equation traveltime and waveform inversion of crosshole seismic data. Geophysics60, 765–773.
    [Google Scholar]
  35. ZhouC., SchusterG.T. and HassanzadehS.1997. Elastic wave equation traveltime and waveform inversion of crosswell data. Geophysics62, 853–868.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12208
Loading
/content/journals/10.1111/1365-2478.12208
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error