1887
Volume 63, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Interferometric redatuming is a data‐driven method to transform seismic responses with sources at one level and receivers at a deeper level into virtual reflection data with both sources and receivers at the deeper level. Although this method has traditionally been applied by cross‐correlation, accurate redatuming through a heterogeneous overburden requires solving a multidimensional deconvolution problem. Input data can be obtained either by direct observation (for instance in a horizontal borehole), by modelling or by a novel iterative scheme that is currently being developed. The output of interferometric redatuming can be used for imaging below the redatuming level, resulting in a so‐called interferometric image. Internal multiples from above the redatuming level are eliminated during this process. In the past, we introduced point‐spread functions for interferometric redatuming by cross‐correlation. These point‐spread functions quantify distortions in the redatumed data, caused by internal multiple reflections in the overburden. In this paper, we define point‐spread functions for interferometric imaging to quantify these distortions in the image domain. These point‐spread functions are similar to conventional resolution functions for seismic migration but they contain additional information on the internal multiples in the overburden and they are partly data‐driven. We show how these point‐spread functions can be visualized to diagnose image defocusing and artefacts. Finally, we illustrate how point‐spread functions can also be defined for interferometric imaging with passive noise sources in the subsurface or with simultaneous‐source acquisition at the surface.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12221
2015-01-12
2024-04-18
Loading full text...

Full text loading...

References

  1. AmundsenL.2001. Elimination of free‐surface related multiples without need of the source wavelet. Geophysics66, 327–341.
    [Google Scholar]
  2. BakulinA. and CalvertR.2006. The virtual source method: Theory and case study. Geophysics71, SI139–SI150.
    [Google Scholar]
  3. BakulinA., MateevaA., CalvertR., JorgensenP. and LopezJ.2007a. Virtual shear source makes shear waves with air guns. Geophysics72, A7–A11.
    [Google Scholar]
  4. BakulinA., MateevaA., MehtaK., JorgensenP., FerrandisJ., Sinha HerholdI. and LopezJ.2007b. Virtual source applications to imaging and reservoir monitoring. The Leading Edge26, 732–740.
    [Google Scholar]
  5. BerkhoutA.J.1997. Pushing the limits of seismic imaging, Part I: Prestack migration in terms of double dynamic focusing. Geophysics62, 937–953.
    [Google Scholar]
  6. BerkhoutA.J.2008. Changing the mindset in seismic data acquisition. The Leading Eedge27, 924–938.
    [Google Scholar]
  7. BerkhoutA.J. and WapenaarC.P.A.1993. A unified approach to acoustical reflection imaging II: The inverse problem. Journal of the Acoustical Society of America93, 2017–2023.
    [Google Scholar]
  8. BerryhillJ.R.1984. Wave‐equation datuming before stack. Geophysics49, 2064–2066.
    [Google Scholar]
  9. BharadwajP., SchusterG.T., MallinsonI. and DaiW.2011. Theory of supervirtual refraction interferometry. Geophysical Journal International188, 263–273.
    [Google Scholar]
  10. BiondiB.2010. Velocity estimation by image‐focusing analysis. Geophysics75, U49–U60.
    [Google Scholar]
  11. BrandE., HurichC. and DeemerD.2013. Geometrical considerations in the acquisition of borehole interferometric data for imaging near‐vertical features: Design of field experiments. Geophysics78, K1–K10.
    [Google Scholar]
  12. BrogginiF., SniederR. and WapenaarK.2012. Focusing the wavefield inside an unknown 1D medium: Beyond seismic interferometry. Geophysics77, A25–A28.
    [Google Scholar]
  13. ByunJ., YuJ. and SeolS.J.2010. Crosswell monitoring using virtual sources and horizontal wells. Geophysics75, 37–43.
    [Google Scholar]
  14. ChavarriaJ.A., GoertzA., KarrenbachM., PaulssonB., MilliganP., SoutyrineV.et al. 2007. The use of VSP techniques for fault characterization: An example from the San Andreas Fault. The Leading Edge26, 770–776.
    [Google Scholar]
  15. ClaerboutJ.F.1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics33, 264–269.
    [Google Scholar]
  16. CurtisA. and HallidayD.2010. Source‐receiver wavefield interferometry. Physical Review E81, 046601.
    [Google Scholar]
  17. De BruinC.G.M., WapenaarC.P.A. and BerkhoutA.J.1990. Angle‐dependent reflectivity by means of prestack migration. Geophysics55, 1223–1234.
    [Google Scholar]
  18. Del MolinoG., AndreolettiC., SandroniS., PolettoF., PetronioL., FarinaB. et al. 2011. Seismic interferometry application to improve seismic reflection signals affected by ice‐plate flexural noise. The Leading Edge30, 538–545.
    [Google Scholar]
  19. DongS., ShengJ. and SchusterG.T.2006. Theory and practice of refraction interferometry. 76th Annual Meeting, SEG, Expanded Abstracts, 3021–3025.
  20. DraganovD., CampmanX., ThorbeckeJ., VerdelA. and WapenaarK.2009. Reflection images from ambient seismic noise. Geophysics74, A63–A67.
    [Google Scholar]
  21. DraganovD., GhoseR., RuigrokE., ThorbeckeJ. and WapenaarK.2010. Seismic interferometry, intrinsic losses and Q‐estimation. Geophysical Prospecting58, 361–373.
    [Google Scholar]
  22. ForghaniF. and SniederR.2010. Underestimation of body waves and feasibility of surface‐wave reconstruction by seismic interferometry. The Leading Edge29, 790–794.
    [Google Scholar]
  23. GaiserJ.E. and VasconcelosI.2010. Elastic interferometry for ocean bottom cable data: Theory and examples. Geophysical Prospecting58, 347–360.
    [Google Scholar]
  24. GaiserJ., VasconcelosI., GeetanR. and FaragherJ.2012. Elastic‐wavefield interferometry using P‐wave source VSPs, Wamsutter field, Wyoming. Geophysics77, Q27–Q36.
    [Google Scholar]
  25. GallotT., CathelineS., RouxP. and CampilloM.2012. A passive inverse filter for Green's function retrieval. Journal of the Acoustical Society of America131, EL21–EL27.
    [Google Scholar]
  26. HallidayD.F., CurtisA., RobertssonJ.O.A. and Van ManenD.J.2007. Interferometric surface‐wave isolation and removal. Geophysics72, A69–A73.
    [Google Scholar]
  27. HampsonG., StefaniJ. and HerkenhoffF.2008. Acquisition using simultaneous sources. The Leading Edge27, 918–923.
    [Google Scholar]
  28. HanafyS.M. and SchusterG.T.2014. Interferometric interpolation of sparse marine data. Geophysics62, 1–16.
    [Google Scholar]
  29. HeR., KarrenbachM., PaulssonB. and SoutyrineV.2009. Near‐wellbore VSP imaging without overburden. Geophysics74, SI9–SI14.
    [Google Scholar]
  30. HornbyB.E. and YuJ.2007. Interferometric imaging of a salt flank using walkaway VSP data. The Leading Edge26, 760–763.
    [Google Scholar]
  31. KingS. and CurtisA.2012. Suppressing nonphysical reflections in Green's function estimates using source‐receiver interferometry. Geophysics77, Q15–Q25.
    [Google Scholar]
  32. KingS., CurtisA. and PooleT.L.2011. Interferometric velocity analysis using physical and nonphysical energy. Geophysics76, SA35–SA49.
    [Google Scholar]
  33. KonstantakiL.A., DraganovD., HeimovaaraT. and GhoseR.2013. Imaging scatterers in landfills using seismic interferometry. Geophysics78, EN107–EN116.
    [Google Scholar]
  34. LecomteI.2008. Resolution and illumination analyses in PSDM: A ray‐based approach. The Leading Edge27, 650–663.
    [Google Scholar]
  35. LoureiroA., Van der NeutJ., AlvesD., CarvalhoJ., AfilhadoA., DraganovD.et al. 2012. Estimation of imageable dip range of target structures in interferometric salt flank imaging with limited illumination. 74th EAGE Conference and Exhibition, Extended Abstracts, X003.
  36. MahdadA., DoulgerisP. and BlacquièreG.2011. Separation of blended data by iterative estimation and subtraction of blending interference noise. Geophysics76, Q9–Q17.
    [Google Scholar]
  37. MehtaK., BakulinA., SheimanJ., CalvertR. and SniederR.2007. Improving the virtual source method by wavefield separation. Geophysics72, V79–V86.
    [Google Scholar]
  38. MehtaK., KiyashchenkoD., JorgensenP., LopezJ., FerrandisJ. and CostelloM.2010. Virtual source method applied to crosswell and horizontal well geometries. The Leading Edge29, 712–723.
    [Google Scholar]
  39. MehtaK., SheimanJ.L., SniederR. and CalvertR.2008. Strengthening the virtual‐source method for time‐lapse monitoring. Geophysics73, S73–S80.
    [Google Scholar]
  40. MenkeW.1989. Geophysical Data Aanalysis. Academic Press.
    [Google Scholar]
  41. MikesellT.D., Van WijkK., CalvertA. and HaneyM.M.2009. The virtual refraction: Useful spurious energy in seismic interferometry. Geophysics74, A13–A17.
    [Google Scholar]
  42. MinatoS., MatsuokaT. and TsujiT.2013. Singular‐value decomposition analysis of source illumination in seismic interferometry by multidimensional deconvolution. Geophysics78, Q25–Q34.
    [Google Scholar]
  43. MinatoS., MatsuokaT., TsujiT., DraganovD., HunzikerJ. and WapenaarK.2011. Seismic interferometry using multidimensional deconvolution and crosscorrelation for crosswell seismic reflection data without borehole sources. Geophysics76, SA19–SA34.
    [Google Scholar]
  44. NeelamaniR., KrohnC.E., KrebsJ.R., RombergJ.K., DeffenbaughM. and AndersonJ.E.2010. Efficient seismic forward modeling using simultaneous random sources and sparsity. Geophysics75, WB15–WB27.
    [Google Scholar]
  45. PaffenholzJ., McLainB., ZaskeJ. and KeliherP.2002. Subsalt multiple attenuation and imaging: Observations from the Sigsbee2B synthetic dataset. 72nd Annual Meeting, SEG, Expanded Abstracts, 2122–2125.
  46. PlessixR.E. and MulderW.A.2004. Frequency‐domain finite‐difference amplitude‐preserving migration. Geophysical Journal International157, 975–987.
    [Google Scholar]
  47. PoliP., CampilloM. and PedersenH.2012. Body‐wave imaging of the Earth's mantle discontinuities from ambient seismic noise. Science338, 1063–1065.
    [Google Scholar]
  48. PoliannikovO.V.2011. Retrieving reflections by source‐receiver wavefield interferometry. Geophysics, 76, SA1–SA8.
    [Google Scholar]
  49. PoliannikovO.V., RodenayS. and ChenL.2012. Interferometric imaging of the underside of a subducting crust. Geophysical Journal International189, 681–690.
    [Google Scholar]
  50. PoliannikovO.V. and WillisM.E.2011. Interferometric correlogram‐space analysis. Geophysics76, SA9–SA17.
    [Google Scholar]
  51. RamírezA.C. and WegleinA.B.2009. Green's theorem as a comprehensive framework for data reconstruction, regularization, wavefield separation, seismic interferometry, and wavelet estimation: A tutorial. Geophysics74, W35–W62.
    [Google Scholar]
  52. RuigrokE., CampmanX. and WapenaarK.2011. Extraction of P‐wave reflections from microseisms. Comptes Rendus Geoscience343, 512–525.
    [Google Scholar]
  53. SchusterG.T.2009. Seismic Interferometry. Cambridge University Press.
    [Google Scholar]
  54. SchusterG.T. and HuJ.2000. Green's function for migration: Continuous recording geometry. Geophysics65, 167–175.
    [Google Scholar]
  55. SchusterG.T. and ZhouM.2006. A theoretical overview of model‐based and correlation‐based redatuming methods. Geophysics71, SI103–SI110.
    [Google Scholar]
  56. SniederR., WapenaarK. and LarnerK.2006. Spurious multiples in seismic interferometry of primaries. Geophysics71, SI111–SI124.
    [Google Scholar]
  57. TaoY. and SenM.K.2013. On a plane‐wave based crosscorrelation‐type seismic interferometry. Geophysics78, Q35–Q44.
    [Google Scholar]
  58. TatanovaM., MehtaK. and KashtanB.2009. Applications of virtual refraction in time‐lapse monitoring. 79th Annual Meeting, SEG, Expanded Abstracts, 2617–2621.
  59. ThorbeckeJ.1997. Common focus point technology . PhD thesis, Delft University of Technology.
  60. ThorbeckeJ. and WapenaarK.2007. On the relation between seismic interferometry and the migration resolution function. Geophysics72, T61–T66.
    [Google Scholar]
  61. ThorbeckeJ. W. and DraganovD.2011. Finite‐difference modeling experiments for seismic interferometry. Geophysics76, H1–H18.
    [Google Scholar]
  62. ThorbeckeJ.W., WapenaarK. and SwinnenG.2004. Design of one‐way wavefield extrapolation operators using smooth functions in WLSQ optimization. Geophysics69, 1037–1045.
    [Google Scholar]
  63. ToxopeusG., ThorbeckeJ., WapenaarK., PetersenS., SlobE. and FokkemaJ.2008. Simulating migrated and inverted seismic data by filtering a geological model. Geophysics73, T1–T10.
    [Google Scholar]
  64. Van der NeutJ.2012. Interferometric redatuming by multidimensional deconvolution . PhD thesis, Delft University of Technology.
  65. Van der NeutJ. and HerrmannF.J.2013. Interferometric redatuming by sparse inversion. Geophysical Journal International192, 666–670.
    [Google Scholar]
  66. Van der NeutJ., ThorbeckeJ., MehtaK., SlobE. and WapenaarK.2011. Controlled‐source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media. Geophysics76, SA63–SA76.
    [Google Scholar]
  67. Van GroenestijnG.J.A. and VerschuurD.J.2010. Estimation of primaries by sparse inversion from passive seismic data. Geophysics75, SA61–SA69.
    [Google Scholar]
  68. VasconcelosI. and RickettJ.2013. Broadband extended images by joint inversion of multiple blended wavefields. Geophysics78, WA147–WA158.
    [Google Scholar]
  69. VasconcelosI. and SniederR.2008. Interferometry by deconvolution, Part I: Theory for acoustic waves and numerical examples. Geophysics73, S115–S128.
    [Google Scholar]
  70. VasconcelosI., SniederR. and HornbyB.2008. Imaging internal multiples from subsalt VSP data – Examples of target‐oriented interferometry. Geophysics73, S157–S168.
    [Google Scholar]
  71. WangY., DongS. and LuoY.2010. Model‐based interferometric interpolation method. Geophysics75, WB211–WB217.
    [Google Scholar]
  72. WangY., LuoY. and SchusterG.T.2009. Interferometric interpolation of missing seismic data. Geophysics74, SI37–SI45.
    [Google Scholar]
  73. WapenaarK.2006. Green's function retrieval by cross‐correlation in case of one‐sided illumination. Geophysical Research Letters33, L19304.
    [Google Scholar]
  74. WapenaarC.P.A. and BerkhoutA.J.1993. Representations of seismic reflection data, Part I: State of affairs. Journal of Seismic Exploration2, 123–131.
    [Google Scholar]
  75. WapenaarK., BrogginiF. and SniederR.2012a. Creating a virtual source inside a medium from reflection data: Heuristic derivation and stationary‐phase analysis. Geophysical Journal International190, 1020–1024.
    [Google Scholar]
  76. WapenaarK. and FokkemaJ.2006. Green's function representations for seismic interferometry. Geophysics71, SI33–SI46.
    [Google Scholar]
  77. WapenaarK., Van der NeutJ. and RuigrokE.2008. Passive seismic interferometry by multidimensional deconvolution. Geophysics73, A51–A56.
    [Google Scholar]
  78. WapenaarK., Van der NeutJ., RuigrokE., DraganovD., HunzikerJ., SlobE.et al. 2011. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: A systematic comparison. Geophysical Journal International185, 1335–1364.
    [Google Scholar]
  79. WapenaarK., Van der NeutJ. and ThorbeckeJ.2012On the relation between seismic interferometry and the simultaneous‐source method. Geophysical Prospecting60, 802–823.
    [Google Scholar]
  80. WeaverR., FromentB. and CampilloM.2009. On the correlation of non‐isotropically distributed ballistic scalar diffuse waves. Journal of the Acoustical Society of America126, 1817–1826.
    [Google Scholar]
  81. WillisM.E., LuR., CampmanX., ToksözM.N., ZhangY. and de HoopM.V.2006. A novel application of time‐reversed acoustics: Salt‐dome flank imaging using walkaway VSP surveys. Geophysics71, A7–A11.
    [Google Scholar]
  82. ZhengY.2010. Retrieving the exact Green's function by wavefield crosscorrelation. Journal of the Acoustical Society of America127, EL93–EL98.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12221
Loading
/content/journals/10.1111/1365-2478.12221
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Seismic imaging; Seismic interferometry; Virtual source

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error