1887
Volume 63 Number 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Over the past few decades seismic methods have increasingly been used for the exploration of mineral, geothermal, and groundwater resources. Nevertheless, there have only been a few cases demonstrating the advantages of multicomponent seismic data for these purposes. To illustrate some of the benefits of three‐component data, a test seismic survey, using 60 digital three‐component sensors spaced between 2 m and 4 m and assembled in a 160 m‐long prototype landstreamer, was carried out over shallow basement structures underlying mineralized horizons and over a magnetic lineament of unknown origin. Two different types of seismic sources, i.e., explosives and a sledgehammer, were used to survey an approximately 4 km‐long seismic profile. Radio‐magnetotelluric measurements were also carried out to provide constraints on the interpretation of the seismic data over a portion of the profile where explosive sources were used. Good quality seismic data were recorded on all three components, particularly when explosives were used as the seismic source. The vertical component data from the explosive sources image the top of the crystalline basement and its undulated/faulted surface at a depth of about 50 m–60 m. Supported by the radio‐magnetotelluric results, however, shallower reflections are observed in the horizontal component data, one of them steeply dipping and associated with the magnetic lineament. The vertical component sledgehammer data also clearly image the crystalline basement and its undulations, but significant shear‐wave signals are not present on the horizontal components. This study demonstrates that multicomponent seismic data can particularly be useful for providing information on shallow structures and in aiding mineral exploration where structural control on the mineralization is expected.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12238
2015-04-06
2024-04-24
Loading full text...

Full text loading...

References

  1. AdamE., PerronG., ArnoldG., MatthewsL. and MilkereitB.2003. 3D seismic imaging for VMS deposit exploration, Matagami, Quebec. In: Hardrock Seismic Exploration (eds D.W.Eaton , B.Mikereit and M.H.Salisbury ), pp. 229–246. Society of Exploration Geophysicists, Tulsa, Oklahoma, USA.
    [Google Scholar]
  2. AhmadiO., JuhlinC., MalehmirA. and MunckM.2013. High‐resolution 2D seismic imaging and forward modeling of a polymetallic sulfide deposit at Garpenberg, Central Sweden. Geophysics78, B339–B350.
    [Google Scholar]
  3. BansalR. and GaiserJ.2013. An introduction to this special section: applications and challenges in shear‐wave exploration. The Leading Edge32, 1–12.
    [Google Scholar]
  4. BastaniM.2001. EnviroMT – a new controlled source/radio magnetotelluric system. PhD thesis, Uppsala University, Uppsala, Sweden.
    [Google Scholar]
  5. BastaniM., MalehmirA., IsmailN., PedersenL.B. and HedjaziF.2009. Delineating hydrothermal stockwork copper deposits using controlled‐source and radio‐magnetotelluric methods: A case study from northeast Iran. Geophysics74, B167–B181.
    [Google Scholar]
  6. BellefleurG., MalehmirA. and MüllerC.2012. Elastic finite‐difference modeling of volcanic‐hosted massive sulfide deposits: A case study from Half Mile Lake, New Brunswick, Canada. Geophysics77, WC25–WC36.
    [Google Scholar]
  7. BellefleurG., MüllerC., SnyderD. and MatthewsL.2004. Downhole seismic imaging of a massive sulphide orebody with mode‐converted waves, Halfmile Lake, New Brunswick, Canada. Geophysics69, 318−329.
    [Google Scholar]
  8. BjørlykkeA. and SangsterD.F.1981. An overview of sandstone‐lead deposits and their relationships to red‐bed copper and carbonate‐hosted lead‐zinc deposits. In: Economic Geology 75th Anniversary, pp. 179–213. The Economic Geology Publishing Company.
    [Google Scholar]
  9. BohlenT., MüllerC. and MilkereitB.2003. Elastic wave scattering from massive sulfide orebodies: on the role of composition and shape. In: Hardrock Seismic Exploration (eds B.Milkereit , D.W.Eaton ,and M.Salisbury ), pp. 70–89. Society of Exploration Geophysicists, Tulsa, Oklahoma, USA.
    [Google Scholar]
  10. BrodicB., MalehmirC. and JuhlinC.2014. Multicomponent broadband seismic landstreamer for high‐resolution imaging and characterization. 16th Seismix International Symposium, Barcelona, Spain.
    [Google Scholar]
  11. BrodicB., MalehmirC., JuhlinC. and BastaniM.2015. Multicomponent broadband seismic landstreamer for high‐resolution imaging and site characterization. In preparation.
  12. CasanovaV.2010. Geological and geophysical characteristics of the Pb‐Zn sandstone‐hosted autochthonous Laisvall deposit in the perspective of regional exploration at the Swedish Caledonian Front. MSc thesis. Luleå University of Technology, Luleå, Sweden.
    [Google Scholar]
  13. CheraghiS., MalehmirA. and BellefleurG.2012. 3D imaging challenges in steeply dipping mining environment: new lights on acquisition geometry and processing from the Brunswick No. 6 seismic data, Canada. Geophysics77, WC109–WC122.
    [Google Scholar]
  14. ChristoffersonH.C., WallinB., SelkmanS. and RickardD.T.1979. Mineralization controls in the sandstone lead‐zinc deposits at Vassbo, Sweden. Economic Geology74, 1239–1249.
    [Google Scholar]
  15. DehghannejadM., JuhlinC., MalehmirA., SkyttäP. and WeihedP.2010. Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics71,125–36.
    [Google Scholar]
  16. DehghannejadM., MalehmirA., JuhlinC. and SkyttäP.2012. 3D constraints and finite‐difference modeling of massive sulfide deposits: The Kristineberg seismic lines revisited, northern Sweden. Geophysics77, WC69–WC79.
    [Google Scholar]
  17. DuffD., HurichC. and DeemerS.2012. Seismic properties of the Voisey's Bay massive sulfide deposit: insights into approaches to seismic imaging. Geophysics77, WC59–WC68.
    [Google Scholar]
  18. EatonD.W.1999. Weak elastic‐wave scattering from massive sulfide ore bodies. Geophysics64, 289−299.
    [Google Scholar]
  19. EatonD.W., AdamE., MilkereitB., SalisburyM., RobertsB., et al. 2010. Enhancing base‐metal exploration with seismic imaging. Canadian Journal of Earth Sciences47, 741−760.
    [Google Scholar]
  20. EdelmannH.A.K.1985. Shear‐wave energy source. In: Seismic Shear Waves, Part B: Applications (ed G.Dohr ), pp. 134–177. Geophysical Press.
    [Google Scholar]
  21. EhsanS.A., MalehmirA. and DehghannejadM.2012. Re‐processing and interpretation of 2D seismic data from the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics80, 43−55.
    [Google Scholar]
  22. GarottaR.2000. Shear waves from acquisition to interpretation. In: Distinguished Instructor Series3, Society of Exploration Geophysicists, Tulsa, Oklahoma, USA.
    [Google Scholar]
  23. GeeD.G.1975. A tectonic model for the central part of the Scandinavian Caledonides. American Journal of Science275, 468–515.
    [Google Scholar]
  24. GeeD.G., JuhlinC., PascalC. and RobinsonP.2010. Collisional Orogeny in the Scandinavian Caledonides (COSC). GFF132, 29–44.
    [Google Scholar]
  25. GillotE., GibsonM., VerneauD. and LarocheS.2005. Application of high‐resolution 3D seismic to mine planning in shallow platinum mines. First Break23, 59–64.
    [Google Scholar]
  26. GreenhalghS.A., ZhouB. and CaoS.2003. A crosswell seismic experiment for nickel sulphide mineralization. Journal of Applied Geophysics53, 77–89.
    [Google Scholar]
  27. HajnalZ., WhiteD., TakacsE., GyorfiS., AnnesleyI.R., WoodG.et al. 2010. Application of modern 2D and 3D seismic reflection techniques for uranium exploration in the Athabasca Basin, in Lithoprobe: parameters, processes and the evolution of a continent. Canadian Journal of Earth Sciences47, 761−782.
    [Google Scholar]
  28. HedinP., JuhlinC. and GeeD.G.2012. Seismic imaging of the Scandinavian Caledonides to define ICDP drilling sites. Tectonophysics 554–447, 30−41.
    [Google Scholar]
  29. HedinP., MalehmirA., GeeD., JuhlinC. and DyreliusD.2014. 3D interpretation by integrating seismic and potential field data in the vicinity of the proposed COSC‐1 drill site, central Swedish Caledonides. In: New Perspectives on the Caledonides of Scandinavia and Related Areas (eds F.Corfu , D.Gasser and D.M.Chew ), pp. 301–319. Geological Society, London, Special Publications.
    [Google Scholar]
  30. HoleJ.A.1992. Nonlinear high‐resolution three‐dimensional seismic traveltime tomography. Journal of Geophysical Research97, 6553–6562.
    [Google Scholar]
  31. HurichC.A., PalmH., DyreliusD. and KristoffersenY.1989. Deformation of the Baltic continental crust during Caledonide intracontinental subduction: views from seismic reflection data. Geology17, 423–425.
    [Google Scholar]
  32. HurichC. and DeemerS.2013. Combined surface and borehole seismic imaging in a hard rock terrain: a field test of seismic interferometry and virtual source profiling. Geophysics78, B103–B110.
    [Google Scholar]
  33. InazakiT.2012. Delineation of detailed structure in Holocene unconsolidated sediments using S‐wave type Land Streamer. Proceedings of 74th EAGE Conference & Exhibition, Copenhagen, Denmark, 2012, pp. 1–5.
    [Google Scholar]
  34. JuhojunttiN., JuhlinC. and DyreliusD.2001. Crustal reflectivity underneath the Central Scandinavian Caledonides. Tectonophysics334, 191–210.
    [Google Scholar]
  35. JuhojunttiN., WoodG., JuhlinC., O'DowdC., DueckP. and CosmaC.2012. 3D seismic survey at the Millennium uranium deposit, Saskatchewan, Canada: mapping depth to basement and imaging post‐Athabasca structure near the ore body. Geophysics77, WC245−WC258.
    [Google Scholar]
  36. KalscheuerT., BastaniM., DonohueS., PerssonL., PfaffhuberA.A., ReiserF.et al. 2013. Delineation of a quick clay zone at Smorgrav, Norway, with electromagnetic methods under geotechnical constraints. Journal of Applied Geophysics92, 121–136.
    [Google Scholar]
  37. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D reflection seismic investigations in the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  38. KorjaT., SmirnovM., PedersenL.B. and GharibiM.2008. Structure of the Central Scandinavian Caledonides and the underlying Precambrian basement, new constraints from magnetotellurics. Geophysical Journal International175, 55–69.
    [Google Scholar]
  39. KrawczykC.M., PolomU., TrabsS. and DahmT.2012. Sinkholes in the city of Hamburg—New urban shear‐wave reflection seismic system enables high‐resolution imaging of sub‐erosion structures. Journal of Applied Geophysics78, 133–143.
    [Google Scholar]
  40. LashC.C.1982. Investigation of multiple reflections and wave conversion by means of a vertical wave test (vertical seismic profiling) in southern Mississippi. Geophysics47, 977–1000.
    [Google Scholar]
  41. LilljequistR.1973. Caledonian geology of the Laisvall Area, southern Norrbotten, Swedish Lapland. Sveriges geologiska undersökning Serie C691, 43.
    [Google Scholar]
  42. MalehmirA. and BellefleurG.2009. 3D seismic reflection imaging of volcanic‐hosted massive sulfide deposits: insights from re‐processing Halfmile Lake data, New Brunswick, Canada. Geophysics74, B209–B219.
    [Google Scholar]
  43. MalehmirA., SchmelzbachC., BongajumE., BellefleurG., JuhlinC. and TryggvasonA.2009. 3D constraints on a possible deep > 2.5 km massive sulphide mineralization from 2D crooked‐line seismic reflection data in the Kristineberg mining area, northern Sweden. Tectonophysics479, 223–240.
    [Google Scholar]
  44. MalehmirA., DahlinP., LundbergE., JuhlinC., SjöströmH. and HögdahlK.2011. Reflection seismic investigations in the Dannemora area, central Sweden: insights into the geometry of poly‐phase deformation zones and magnetite‐skarn deposits. Journal of Geophysical Research116, B11307.
    [Google Scholar]
  45. MalehmirA., AnderssonM., LebedevM., UrosevicM. and MikhaltsevitchV.2013a. Experimental estimation of velocities and anisotropy of a series of Swedish crystalline rocks and ores. Geophysical Prospecting61, 153–167.
    [Google Scholar]
  46. MalehmirA., BastaniM., KrawzyckC., GurkM., IsmailN., PolomU.et al. 2013b. Geophysical assessment and geotechnical investigation of quick‐clay landslides – a Swedish case study. Near Surface Geophysics11, 341–350.
    [Google Scholar]
  47. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.et al. 2012a. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics77, WC173–WC190.
    [Google Scholar]
  48. MalehmirA., KoivistoE., ManziM., CheraghiS., DurrheimR., BellefleurG.et al. 2014. A review of reflection seismic investigations in three major metallogenic regions: the Kevitsa Ni‐Cu‐PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geology Reviews56, 423–441.
    [Google Scholar]
  49. MalehmirA., JuhlinC., WijnsC., UrosevicM., ValastiP. and KoivistoE.2012b. 3D reflection seismic investigation for open‐pit mine planning and exploration in the Kevitsa Ni‐Cu‐PGE deposit, Northern Finland. Geophysics77, WC95–WC108.
    [Google Scholar]
  50. MalinowskiM. and WhiteD.2011. Converted wave seismic imaging in the Flin Flon mining camp. Journal of Applied Geophysics75, 719–730.
    [Google Scholar]
  51. MalinowskiM., SchetselaarE. and WhiteD.2012. 3D seismic imaging in the Flin Flon VMS mining camp – Part II: Forward modeling. Geophysics77, WC81–WC93.
    [Google Scholar]
  52. ManziM.S.D., GibsonM.A.S., HeinK.A.A., KingN. and DurrheimR.J.2012a. Application of 3D seismic techniques in evaluation of ore resources in the West Wits Line goldfield and portions of the West Rand Goldfield, South Africa. Geophysics77, WC163–WC171.
    [Google Scholar]
  53. ManziM., DurrheimR.J., HeinK.A.A. and KingN.2012b. 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa. Geophysics77, WC133–WC147.
    [Google Scholar]
  54. MilkereitB., BerrerE.K., KingA.R., WattsA.H., RobertsB., AdamE.et al. 2000. Development of 3−D seismic exploration technology for deep nickel‐copper deposits‐A case history from the Sudbury basin, Canada. Geophysics65, 1890−1899.
    [Google Scholar]
  55. MilkereitB., EatonD.W., WuJ., PerronG., SalisburyM.H., BerrerE.et al. 1996. Seismic imaging of massive sulphide deposits: Part II. Reflection seismic profiling. Economic Geology91, 829−834.
    [Google Scholar]
  56. PedersenL.B. and EngelsM.2005. Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor. Geophysics70, 31−41.
    [Google Scholar]
  57. PodvinP. and LecomteI.1991. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International105, 271–284.
    [Google Scholar]
  58. PolomU., HansenL., SauvinG., L'HeureuxJ.‐S., LecomteI., KrawczykC.M.et al. 2010. High‐resolution SH‐wave seismic refl ection for characterization of onshore ground conditions in the Trondheim harbor, central Norway. In: SEG Geophysical Developments Series No. 15: Advances in Near‐Surface Seismology and Ground‐Penetrating Radar (eds R.D.Miller , J.D.Bradford , and K.Holliger ), pp. 75–92. Society of Exploration Geophysicists, Tulsa, Oklahoma, USA.
    [Google Scholar]
  59. PretoriusC.C., TrewickW.F., FourieA. and IronsC.2000. Application of 3D seismics to mine planning at Vaal Reefs Gold Mine, number 10 shaft, Republic of South Africa. Geophysics65, 1862−1870.
    [Google Scholar]
  60. PuginA.J.‐M., PullanS.E. and HunterJ.A.2010. Update on recent observations in multicomponent seismic reflection profiling. 23rd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems.
  61. PuginA.J.‐M., BrewerK., CartwrightT., PullanS.E., PerretD., CrowH.et al. 2013. Near surface S‐wave seismic reflection profiling—new approaches and insights. First Break31, 49–60.
    [Google Scholar]
  62. PurnellG.W.1992. Imaging beneath a high‐velocity layer using converted waves. Geophysics57, 1444–1452.
    [Google Scholar]
  63. RasmussenT., RobertsR. and PedersenL.1987. Magnetotellurics along the Fennoscandian long range profile. Geophysical Journal of the Royal Astronomical Society89, 799–820.
    [Google Scholar]
  64. RickardD.T., WilldénM.Y., MarinderN.E. and DonnellyT.H.1979. Studies on the genesis of the Laisvall sandstone lead‐zinc deposit, Sweden. Economic Geology74, 1255−1285.
    [Google Scholar]
  65. RomerR.1992. Sandstone‐hosted lead‐zinc mineral deposits and their relation to the tectonic mobilization of the Baltic Shield during the Caledonian orogeny, a reinterpretation. Mineralogy and Petrology47, 67−85.
    [Google Scholar]
  66. SaintilanN.J.D., FontbotéL., StephensM.B. and LundstamE.2013. Reactivated basement structures and their control on sandstone‐hosted Pb‐Zn deposit along the eastern front of the Scandinavian Caledonides. Proceedings of the 12th Society for Geology Applied to Mineral Deposits Biennial Meeting4, 1667–1670.
    [Google Scholar]
  67. SaintilanN.J.D., StephensM.B., LundstamE. and FontbotéL.2015. Control of reactivated Proterozoic basement structures on sandstone‐hosted Pb‐Zn deposits along the Caledonian Front, Sweden: evidence from airborne magnetic data, structural analysis, and ore‐grade modeling. Economic Geology110, In press.
    [Google Scholar]
  68. SalisburyM.H., HarveyC.W. and MatthewsL.2003. The acoustic properties of ores and host rocks in hardrock terranes. In: Hard Rock Seismic Exploration (eds D.W.Eaton , B.Mikereit and M.H.Salisbury ), pp. 9–19. Society of Exploration Geophysicists.
    [Google Scholar]
  69. SchmuskerU.1970. An introduction to induction anomalies. Journal of Geomagnetism and Geoelectricity22, 9−33.
    [Google Scholar]
  70. ShanC., BastaniM., MalehmirA., PerssonL. and EngdahlM.2014. Integrated 2D modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden. Geophysics79, EN61–EN75.
    [Google Scholar]
  71. SnyderD.B., CaryP. and SalisburyM.2008. 2D−3C high‐resolution seismic data from the Abitibi Greenstone Belt, Canada. Tectonophysics472, 226–237.
    [Google Scholar]
  72. SoperN.J., StrachanR.A., HoldsworthR.E., GayerR.A. and GreilingR.O.1992. Sinistral transpression and the Silurian closure of Iapetus. Journal of the Geological Society149, 871–880.
    [Google Scholar]
  73. SpeisB.R.1989. Depth of investigation in electromagnetic sounding methods. Geophysics54, 872–888.
    [Google Scholar]
  74. StephensM.B. and GeeD.G.1985. A tectonical model for the evolution of the eugeoclinal terranes in the central Scandinavian Caledonides. In: The Caledonian Orogen—Scandinavia and Related Areas (eds D.G.Gee and B.A.Sturt ), pp. 953–978. John Wiley, Chichester, England.
    [Google Scholar]
  75. StewartR.R., GaiserJ.E., BrownR.J. and LawtonD.C.2002. Converted‐wave seismic exploration: methods. Geophysics67, 1348–1363.
    [Google Scholar]
  76. StewartR.R., GaiserJ.E., BrownR.J., and LawtonD.C.2003. Converted‐wave seismic exploration: applications. Geophysics68, 40–57.
    [Google Scholar]
  77. TessmerG. and BehleA.1988. Common reflection point data stacking technique for converted waves. Geophysical Prospecting36, 671–688.
    [Google Scholar]
  78. ThomsenL.1999. Converted‐wave reflection seismology over inhomogeneous, anisotropic media. Geophysics64, 678–690.
    [Google Scholar]
  79. TryggvasonA., RögnvaldssonS.T. and FlovenzÓ.G.2002. Three dimensional imaging of P‐ and S‐wave velocity structure and earthquake locations beneath southwest Iceland. Geophysical Journal International151, 848–866.
    [Google Scholar]
  80. UrocevicM., GaneshB. and MarcosG.2012. Targeting nickel sulphide deposits from 3D seismic reflection data at Kambalda, Australia. Geophysics77, WC123−WC132.
    [Google Scholar]
  81. WelinE.1970. Den svekofenniska orogena zonen i norra Sverige – En preliminär diskussion. GFF92, 433–451.
    [Google Scholar]
  82. WhiteD., BoernerD., WuJ., LucasS., BerrerE., HannilaJ.et al. 2000. Mineral exploration in the Thompson nickel belt, Manitoba, Canada, using seismic and controlled‐source EM methods. Geophysics65, 1871−1881.
    [Google Scholar]
  83. WhiteD.J., SecordD. and MalinowskiM.2012. 3D seismic imaging in the Flin Flon VMS mining camp: part I — seismic results. Geophysics77, WC47–WC58.
    [Google Scholar]
  84. WilldénM.2004. The Laisvall sandstone‐hosted Pb‐Zn deposit: geological overview. In: Society of Economic Geologists, Guidebook Series33, pp. 115−127.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12238
Loading
/content/journals/10.1111/1365-2478.12238
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error